368,181 research outputs found

    Atmosphere-like turbulence generation with surface-etched phase-screens

    Get PDF
    We built and characterized an optical system that emulates the optical characteristics of an 8m-class telescope like the Very Large Telescope. The system contains rotating glass phase-screens to generate realistic atmosphere-like optical turbulence, as needed for testing multi-conjugate adaptive optics systems. In this paper we present an investigation of the statistical properties of two phase-screens etched on glass-plate surfaces, obtained from Silios Technologies. Those etched screens are highly transmissive (above 85%) from 0.45 to 2.5 microns. From direct imaging, their Fried parameter r0 values (0.43+-0.04 mm and 0.81+-0.03 mm, respectively, at 0.633 microns) agree with the expectation to within 10%. This is also confirmed by a comparison of measured and expected Zernike coefficient variances. Overall, we find that those screens are quite reproducible, allowing sub-millimetre r0 values, which were difficult to achieve in the past. We conclude that the telescope emulator and phase-screens form a powerful atmospheric turbulence generator allowing systematic testing of different kinds of AO instrumentation.Comment: 10 pages, 8 figures, 3 mpeg movies. Submitted to Optics Expres

    Lighting and display screens: Models for predicting luminance limits and disturbance

    No full text
    An investigation of the level of disturbance caused by reflections from a variety of display screens, including interactive whiteboards, has been carried out using three test methods: Luminance adjustment, category rating and reading. The results from the luminance adjustment test and the category rating test were consistent, both showing similar significant effects of lighting-display parameters on the disturbance caused by screen reflections. In contrast, the objective measure of task performance in the reading test was barely responsive to reflections on the screens. Two models have been developed, one to predict the luminaire luminance at which 95% of observers were not disturbed by the reflections and the other to predict the rating of disturbance caused by reflections from the screens. Both models are based on lighting-display parameters including the size and luminance of the reflected light source and the specular reflectance, the effect of haze reflection and the background luminance of the display screen. These models can be used generally, to guide lighting recommendations and, specifically, to identify suitable luminaires to be used with given set of display screens or suitable display screens to be used with a given lighting installation

    How to understand the cell by breaking it: network analysis of gene perturbation screens

    Get PDF
    Modern high-throughput gene perturbation screens are key technologies at the forefront of genetic research. Combined with rich phenotypic descriptors they enable researchers to observe detailed cellular reactions to experimental perturbations on a genome-wide scale. This review surveys the current state-of-the-art in analyzing perturbation screens from a network point of view. We describe approaches to make the step from the parts list to the wiring diagram by using phenotypes for network inference and integrating them with complementary data sources. The first part of the review describes methods to analyze one- or low-dimensional phenotypes like viability or reporter activity; the second part concentrates on high-dimensional phenotypes showing global changes in cell morphology, transcriptome or proteome.Comment: Review based on ISMB 2009 tutorial; after two rounds of revisio

    Thermal issues for the optical transition radiation screen for the ELI-NP compton gamma source

    Get PDF
    A high brightness electron LINAC is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches, 16 ns spaced, with a nominal charge of 250 pC will collide with a laser beam in two interaction points. Electron beam spot size is measured with Optical Transition Radiation (OTR) profile monitors. In order to measure the beam properties, the OTR screens must sustain the thermal and mechanical stress due to the energy deposited by bunches. This paper is an ANSYS study of the issues due to the high energy transferred to the OTR screens. Thermal multicycle analysis will be shown; each analysis will be followed by a structural analysis in order to investigate the performance of the materia

    A frequency-independent boundary element method for scattering by two-dimensional screens and apertures

    Get PDF
    We propose and analyse a hybrid numerical-asymptotic hphp boundary element method for time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft two-dimensional screens. Our method uses an approximation space enriched with oscillatory basis functions, chosen to capture the high frequency asymptotics of the solution. Our numerical results suggest that fi�xed accuracy can be achieved at arbitrarily high frequencies with a frequency-independent computational cost. Our analysis does not capture this observed behaviour completely, but we provide a rigorous frequency-explicit error analysis which proves that the method converges exponentially as the number of degrees of freedom NN increases, and that to achieve any desired accuracy it is sufficient to increase NN in proportion to the square of the logarithm of the frequency as the frequency increases (standard boundary element methods require NN to increase at least linearly with frequency to retain accuracy). We also show how our method can be applied to the complementary "breakwater" problem of propagation through an aperture in an infinite sound-hard screen
    • …
    corecore