44,585 research outputs found
Pseudogap and Mott Transition Studied by Cellular Dynamical Mean Field Theory
We study metal-insulator transitions between Mott insulators and metals. The
transition mechanism completely different from the original dynamical mean
field theory (DMFT) emerges from a cluster extension of it. A consistent
picture suggests that the quasiparticle weight remains nonzero through
metals and suddenly jumps to zero at the transition, while the gap opens
continuously in the insulators. This is in contrast with the original DMFT,
where continuously vanishes but the gap opens discontinuously. The present
results arising from electron differentiation in momentum space agree with
recent puzzling bulk-sensitive experiments on CaVO and SrVO.Comment: 5 pages, 4 figure
M67-1194, an unusually Sun-like solar twin in M67
The rich open cluster M67 is known to have a chemical composition close to
solar, and an age around 4Gyr. It thus offers the opportunity to check our
understanding of the physics and the evolution of solar-type stars in a cluster
environment. We present the first spectroscopic study at high resolution,
R~50,000, of the potentially best solar twin, M67-1194, identified among
solar-like stars in M67. Based on a pre-selection of solar-twin candidates
performed at medium resolution by Pasquini et al. (2008), we explore the
chemical-abundance similarities and differences between M67-1194 and the Sun,
using VLT/FLAMES-UVES. Working with a solar twin in the framework of a
differential analysis, we minimize systematic model errors in the abundance
analysis compared to previous studies which utilized more evolved stars to
determine the metallicity of M67. We find M67-1194 to have stellar parameters
indistinguishable from the solar values, with the exception of the overall
metallicity which is slightly super-solar ([Fe/H]=0.023 +/- 0.015). An age
determination based on evolutionary tracks yields 4.2 +/- 1.6Gyr. Most
surprisingly, we find the chemical abundance pattern to closely resemble the
solar one, in contrast to most known solar twins in the solar neighbourhood. We
confirm the solar-twin nature of M67-1194, the first solar twin known to belong
to a stellar association. This fact allows us to put some constraints on the
physical reasons for the seemingly systematic departure of M67-1194 and the Sun
from most known solar twins regarding chemical composition. We find that
radiative dust cleansing by nearby luminous stars may be the explanation for
the peculiar composition of both the Sun and M67-1194, but alternative
explanations are also possible. The chemical similarity between the Sun and
M67-1194 also suggests that the Sun once formed in a cluster like M67
Ferromagnetic Domain Structure of La0.78Ca0.22MnO3 Single Crystals
The magneto-optical technique has been employed to observe spontaneous
ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The
magnetic domain topology was found to be correlated with the intrinsic twin
structure of the investigated crystals. With decreasing temperature the regular
network of ferromagnetic domains undergoes significant changes resulting in
apparent rotation of the domain walls in the temperature range of 70-150 K. The
apparent rotation of the domain walls can be understood in terms of the
Jahn-Teller deformation of the orthorhombic unit cell, accompanied by
additional twinning.Comment: 7 pages, 5 figures, to be published in PR
A brief history of research on the genetics of alcohol and other drug use disorders.
ObjectiveThis article reviews developments in research on genetic influences on alcohol and other drug use and disorders over the past 7 decades.MethodThe author began with a review of the flow and content of articles published in the three iterations of the journal since 1940 and then used a PubMed search of genetics of alcohol and other drug-related topics to gain a broad overview of developments in this field.ResultsThe literature demonstrates the rapid metamorphosis of genetic research from the ideas of Mendel to an understanding that the substance use disorders are complex, genetically influenced conditions where genes explain up to 60% of the picture. Most genes operate through additional intermediate characteristics, such as impulsivity and a low sensitivity to alcohol, some of which are substance specific and others related to substances in general. Using linkage, association, genome-wide association, and other modern methods, investigators have identified a diverse range of genetic variations that affect substance-related phenomena.ConclusionsGenetic studies regarding alcohol and other drug use and problems have grown dramatically in the past 75 years. We currently have a much more sophisticated understanding of these influences, and the rapid development of new methods has the promise of continuing what has been a solid contribution of important findings in recent years
Twins Among the Low Mass Spectroscopic Binaries
We report an analysis of twins of spectral types F or later in the 9th
Catalog of Spectroscopic Binaries (SB9). Twins, the components of binaries with
mass ratio within 2% of 1.0, are found among the binaries with primaries of F
and G spectral type. They are most prominent among the binaries with periods
less than 43 days, a cutoff first identified by Lucy. Within the subsample of
binaries with P<43 days, the twins do not differ from the other binaries in
their distributions of periods (median P~7d), masses, or orbital
eccentricities. Combining the mass ratio distribution in the SB9 in the mass
range 0.6 to 0.85 Msun with that measured by Mazeh et al. for binaries in the
Carney-Latham high proper motion survey, we estimate that the frequency of
twins in a large sample of spectroscopic binaries is about 3%. Current
theoretical understanding indicates that accretion of high specific angular
momentum material by a protobinary tends to equalize its masses. We speculate
that the excess of twins is produced in those star forming regions where the
accretion processes were able to proceed to completion for a minority of
protobinaries. This predicts that the components of a young twin may appear to
differ in age and that, in a sample of spectroscopic binaries in a star
formation region, the twins are, on average, older than the binaries with mass
ratios much smaller than 1.Comment: Accepted by the Astronomical Journa
Ultrametricity Between States at Different Temperatures in Spin-Glasses
We prove the existence of correlations between the equilibrium states at
different temperatures of the multi--spin spherical spin-glass models with
continuous replica symmetry breaking: there is no chaos in temperature in these
models. Furthermore, the overlaps satisfy ultrametric relations. As a
consequence the Parisi tree is essentially the same at all temperatures with
lower branches developing when lowering the temperature. We conjecture that the
reference free energies of the clusters are also fixed at all temperatures as
in the generalized random-energy model.Comment: 18 pages, submitted to EPJ
Direct Observation of a One Dimensional Static Spin Modulation in Insulating La1.95Sr0.05CuO4
We report the results of an extensive elastic neutron scattering study of the
incommensurate (IC) static spin correlations in La1.95Sr0.05CuO4 which is an
insulating spin glass at low temperatures. The present neutron scattering
experiments on the same x=0.05 crystal employ a narrower instrumental
Q-resolution and thereby have revealed that the crystal has only two
orthorhombic twins at low temperatures with relative populations of 2:1. We
find that, in a single twin, only two satellites are observed at (1, +/-0.064,
L)(ortho) and (0, 1+/-0.064, L)(ortho), that is, the modulation vector is only
along the orthorhombic b*-axis. This demonstrates unambiguously that
La1.95Sr0.05CuO4 has a one-dimensional static diagonal spin modulation at low
temperatures, consistent with certain stripe models. We have also reexamined
the x=0.04 crystal that previously was reported to show a single commensurate
peak. By mounting the sample in the (H, K, 0) zone, we have discovered that the
x=0.04 sample in fact has the same IC structure as the sample. The
incommensurability parameter d for x=0.04 and 0.05, where d is the distance
from (1/2, 1/2) in tetragonal reciprocal lattice units, follows the linear
relation d=x. These results demonstrate that the insulator to superconductor
transition in the under doped regime (0.05 </= x </= 0.06) in La2-xSrxCuO4 is
coincident with a transition from diagonal to collinear static stripes at low
temperatures thereby evincing the intimate coupling between the one dimensional
spin density modulation and the superconductivity.Comment: 9 pages 8 figure
- …