100,084 research outputs found

    Finding Eyewitness Tweets During Crises

    Full text link
    Disaster response agencies have started to incorporate social media as a source of fast-breaking information to understand the needs of people affected by the many crises that occur around the world. These agencies look for tweets from within the region affected by the crisis to get the latest updates of the status of the affected region. However only 1% of all tweets are geotagged with explicit location information. First responders lose valuable information because they cannot assess the origin of many of the tweets they collect. In this work we seek to identify non-geotagged tweets that originate from within the crisis region. Towards this, we address three questions: (1) is there a difference between the language of tweets originating within a crisis region and tweets originating outside the region, (2) what are the linguistic patterns that can be used to differentiate within-region and outside-region tweets, and (3) for non-geotagged tweets, can we automatically identify those originating within the crisis region in real-time

    The Information of Spam

    Get PDF
    This paper explores the value of information contained in spam tweets as it pertains to prediction accuracy. As a case study, tweets discussing Bitcoin were collected and used to predict the rise and fall of Bitcoin value. Precision of prediction both with and without spam tweets, as identified by a naive Bayesian spam filter, were measured. Results showed a minor increase in accuracy when spam tweets were included, indicating that spam messages likely contain information valuable for prediction of market fluctuations

    Identifying Purpose Behind Electoral Tweets

    Full text link
    Tweets pertaining to a single event, such as a national election, can number in the hundreds of millions. Automatically analyzing them is beneficial in many downstream natural language applications such as question answering and summarization. In this paper, we propose a new task: identifying the purpose behind electoral tweets--why do people post election-oriented tweets? We show that identifying purpose is correlated with the related phenomenon of sentiment and emotion detection, but yet significantly different. Detecting purpose has a number of applications including detecting the mood of the electorate, estimating the popularity of policies, identifying key issues of contention, and predicting the course of events. We create a large dataset of electoral tweets and annotate a few thousand tweets for purpose. We develop a system that automatically classifies electoral tweets as per their purpose, obtaining an accuracy of 43.56% on an 11-class task and an accuracy of 73.91% on a 3-class task (both accuracies well above the most-frequent-class baseline). Finally, we show that resources developed for emotion detection are also helpful for detecting purpose
    corecore