702 research outputs found

    Close relation of arterial ICC-like cells to the contractile phenotype of vascular smooth muscle cell

    Get PDF
    This work aimed to establish the lineage of cells similar to the interstitial cells of Cajal (ICC), the arterial ICC-like (AIL) cells, which have recently been described in resistance arteries, and to study their location in the artery wall. Segments of guinea-pig mesenteric arteries and single AIL cells freshly isolated from them were used. Confocal imaging of immunostained cells or segments and electron microscopy of artery segments were used to test for the presence and cellular localization of selected markers, and to localize AIL cells in intact artery segments. AIL cells were negative for PGP9.5, a neural marker, and for von Willebrand factor (vWF), an endothelial cell marker. They were positive for smooth muscle α-actin and smooth muscle myosin heavy chain (SM-MHC), but expressed only a small amount of smoothelin, a marker of contractile smooth muscle cells (SMC), and of myosin light chain kinase (MLCK), a critical enzyme in the regulation of smooth muscle contraction. Cell isolation in the presence of latrunculin B, an actin polymerization inhibitor, did not cause the disappearance of AIL cells from cell suspension. The fluorescence of basal lamina protein collagen IV was comparable between the AIL cells and the vascular SMCs and the fluorescence of laminin was higher in AIL cells compared to vascular SMCs. Moreover, cells with thin processes were found in the tunica media of small resistance arteries using transmis-sion electron microscopy. The results suggest that AIL cells are immature or phenotypically modulated vascular SMCs constitutively present in resistance arteries

    Common-path multimodal optical microscopy

    Get PDF
    We have developed a common-path multimodal optical microscopy system that is capable of using a single optical source and a single camera to image amplitude, phase, and fluorescence features of a biological specimen. This is achieved by varying either contrast enhancement filters at the Fourier plane and/or neutral density/fluorescence filters in front of the CCD camera. The feasibility of the technique is demonstrated by obtaining brightfield, fluorescence, phase-contrast, spatially filtered, brightfield + fluorescence, phase +fluorescence, and edge-enhanced+fluorescence images of the same Drosophila embryo without the need for image registration and fusion. This comprehensive microscope has the capability of providing both structural and functional information and may be used for applications such as studying live-cell dynamics and in high throughput microscopy and automated microscopy

    Requirement for the betaI and betaIV tubulin isotypes in mammalian cilia.

    Get PDF
    Nielsen et al., [2001: Curr Biol 11:529-533], based on studies in Drosophila, have proposed that beta tubulin in axonemal microtubules must contain a specific acidic seven amino acid sequence in its carboxyl terminus. In mammals, the two betaIV isotypes (betaIVa and betaIVb) contain that sequence. In order to test the application of this hypothesis to mammals, we have examined the expression of beta tubulin isotypes in four different ciliated tissues (trachea, ependyma, uterine tube, and testis) using isotype-specific antibodies and indirect immunofluorescence. We find that betaIV tubulin is present in all ciliated cell types examined, but so is betaI tubulin. Taken together with recent studies that show that betaI and betaIV tubulin are both present in the cilia of vestibular hair cells, olfactory neurons, and nasal respiratory epithelial cells, we propose that both betaI tubulin and betaIV tubulin may be required for axonemal structures in mammals

    Biomineralisation in the Palaeozoic oceans: evidence for simultaneous crystallisation of high and low magnesium calcite by phacopine trilobites

    Get PDF
    The chemical composition and microstructure of the calcite cuticles of eleven species of phacopine trilobites have been investigated by electron beam imaging, diffraction, and microanalysis, and results reveal that the lenses of their schizochroal eyes differed significantly in chemical composition from the rest of the cuticle in vivo. Apart from the eye lenses, most cuticles are inferred to have escaped extensive recrystallisation because their constituent crystals are sub-micrometre in size and have a preferred orientation that is consistent between species. Their current compositions of ~1.4 to 2.4 mol% MgCO3 are likely to be close to original values, although as they commonly luminesce and contain detectable manganese and iron, some diagenetic alteration has taken place. The associated lenses have a microstructure that is suitable for focusing light, yet are optically turbid owing to the presence within calcite of micropores and crystals of microdolomite, apatite, celestite and pyrite. The microdolomite indicates that lenses recrystallised from an original high-Mg calcite composition and this is supported by the presence of nanometre-scale modulated microstructures in both the calcite and dolomite. These lenses currently contain ~1 to 6 mol% MgCO3, and by comparison with the proportion of magnesium lost from echinoderm stereom in the same thin sections, may have contained ~7.5 mol% MgCO3 in vivo. In some samples, more extensive diagenetic alteration is evidenced by recrystallisation of the cuticle including lenses to coarse equant calcite or enrichment of the cuticle, but not necessarily the lenses, in magnesium accompanying replacement by a Mg–Fe phyllosilicate. The phacopine trilobites had to modify partition coefficients for magnesium considerably in order to grow lenses with contrasting compositions to the rest of their cuticles, and such a strong vital effect on biomineralisation suggests that incorporation of magnesium was essential for functioning of their calcite optical s

    Nano-artifact metrics based on random collapse of resist

    Full text link
    Artifact metrics is an information security technology that uses the intrinsic characteristics of a physical object for authentication and clone resistance. Here, we demonstrate nano-artifact metrics based on silicon nanostructures formed via an array of resist pillars that randomly collapse when exposed to electron-beam lithography. The proposed technique uses conventional and scalable lithography processes, and because of the random collapse of resist, the resultant structure has extremely fine-scale morphology with a minimum dimension below 10 nm, which is less than the resolution of current lithography capabilities. By evaluating false match, false non-match and clone-resistance rates, we clarify that the nanostructured patterns based on resist collapse satisfy the requirements for high-performance security applications