194,817 research outputs found
Amorphous interface layer in thin graphite films grown on the carbon face of SiC
Cross-sectional transmission electron microscopy (TEM) is used to
characterize an amorphous layer observed at the interface in graphite and
graphene films grown via thermal decomposition of C-face 4H-SiC. The amorphous
layer does not to cover the entire interface, but uniform contiguous regions
span microns of cross-sectional interface. Annular dark field scanning
transmission electron microscopy (ADF-STEM) images and electron energy loss
spectroscopy (EELS) demonstrate that the amorphous layer is a carbon-rich
composition of Si/C. The amorphous layer is clearly observed in samples grown
at 1600{\deg}C for a range of growth pressures in argon, but not at
1500{\deg}C, suggesting a temperature-dependent formation mechanism
Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications
We present the results of the characterization of Mg/Co periodic multilayers
and their thermal stability for the EUV range. The annealing study is performed
up to a temperature of 400\degree C. Images obtained by scanning transmission
electron microscopy and electron energy loss spectroscopy clearly show the good
quality of the multilayer structure. The measurements of the EUV reflectivity
around 25 nm (~49 eV) indicate that the reflectivity decreases when the
annealing temperature increases above 300\degreeC. X-ray emission spectroscopy
is performed to determine the chemical state of the Mg atoms within the Mg/Co
multilayer. Nuclear magnetic resonance used to determine the chemical state of
the Co atoms and scanning electron microscopy images of cross sections of the
Mg/Co multilayers reveal changes in the morphology of the stack from an
annealing temperature of 305\degreee;C. This explains the observed reflectivity
loss.Comment: Published in Applied Physics A: Materials Science \& Processing
Published at
http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21
page
Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images
Nowadays, modern electron microscopes deliver images at atomic scale. The
precise atomic structure encodes information about material properties. Thus,
an important ingredient in the image analysis is to locate the centers of the
atoms shown in micrographs as precisely as possible. Here, we consider scanning
transmission electron microscopy (STEM), which acquires data in a rastering
pattern, pixel by pixel. Due to this rastering combined with the magnification
to atomic scale, movements of the specimen even at the nanometer scale lead to
random image distortions that make precise atom localization difficult. Given a
series of STEM images, we derive a Bayesian method that jointly estimates the
distortion in each image and reconstructs the underlying atomic grid of the
material by fitting the atom bumps with suitable bump functions. The resulting
highly non-convex minimization problems are solved numerically with a trust
region approach. Well-posedness of the reconstruction method and the model
behavior for faster and faster rastering are investigated using variational
techniques. The performance of the method is finally evaluated on both
synthetic and real experimental data
A Streaming Multi-GPU Implementation of Image Simulation Algorithms for Scanning Transmission Electron Microscopy
Simulation of atomic resolution image formation in scanning transmission
electron microscopy can require significant computation times using traditional
methods. A recently developed method, termed plane-wave reciprocal-space
interpolated scattering matrix (PRISM), demonstrates potential for significant
acceleration of such simulations with negligible loss of accuracy. Here we
present a software package called Prismatic for parallelized simulation of
image formation in scanning transmission electron microscopy (STEM) using both
the PRISM and multislice methods. By distributing the workload between multiple
CUDA-enabled GPUs and multicore processors, accelerations as high as 1000x for
PRISM and 30x for multislice are achieved relative to traditional multislice
implementations using a single 4-GPU machine. We demonstrate a potentially
important application of Prismatic, using it to compute images for atomic
electron tomography at sufficient speeds to include in the reconstruction
pipeline. Prismatic is freely available both as an open-source CUDA/C++ package
with a graphical user interface and as a Python package, PyPrismatic
Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures
The structure and composition of single GaAsBi/GaAs epilayers grown by molecular beam epitaxy were investigated by optical and transmission electron microscopy techniques. Firstly, the GaAsBi layers exhibit two distinct regions and a varying Bi composition profile in the growth direction. In the lower (25 nm) region, the Bi content decays exponentially from an initial maximum value, while the upper region comprises an almost constant Bi content until the end of the layer. Secondly, despite the relatively low Bi content, CuPtB-type ordering was observed both in electron diffraction patterns and in fast Fourier transform reconstructions from high-resolution transmission electron microscopy images. The estimation of the long-range ordering parameter and the development of ordering maps by using geometrical phase algorithms indicate a direct connection between the solubility of Bi and the amount of ordering. The occurrence of both phase separation and atomic ordering has a significant effect on the optical properties of these layers
- …