99,744 research outputs found
A new 3D-beam finite element including non-uniform torsion with the secondary torsion moment deformation effect
In this paper, a new 3D Timoshenko linear-elastic beam finite element including warping torsion will be presented which is suitable for analysis of spatial structures consisting of constant open and hollow structural section (HSS) beams. The analogy between the 2ndorder beam theory (with axial tension) and torsion (including warping) was used for the formulation of the equations for non-uniform torsion. The secondary torsional moment deformation effect and the shear force effect are included into the local beam finite element stiffness matrix. The warping part of the first derivative of the twist angle was considered as an additional degree of freedom at the finite element nodes. This degree of freedom represents a part of the twist angle curvature caused by the bimoment. Results of the numerical experiments are discussed, compared and evaluated. The importance of the inclusion of warping in stress-deformation analyses of closed-section beams is demostrated
Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction
A general analysis of thermal noise in torsion pendulums is presented. The
specific case where the torsion angle is kept fixed by electronic feedback is
analyzed. This analysis is applied to a recent experiment that employed a
torsion pendulum to measure the Casimir force. The ultimate limit to the
distance at which the Casimir force can be measured to high accuracy is
discussed, and in particular the prospects for measuring the thermal correction
are elaborated upon.Comment: one figure, five pages, to be submitted to Phys Rev
Control and femtosecond time-resolved imaging of torsion in a chiral molecule
We study how the combination of long and short laser pulses, can be used to
induce torsion in an axially chiral biphenyl derivative
(3,5-difluoro-3',5'-dibromo-4'-cyanobiphenyl). A long, with respect to the
molecular rotational periods, elliptically polarized laser pulse produces 3D
alignment of the molecules, and a linearly polarized short pulse initiates
torsion about the stereogenic axis. The torsional motion is monitored in
real-time by measuring the dihedral angle using femtosecond time-resolved
Coulomb explosion imaging. Within the first 4 picoseconds, torsion occurs with
a period of 1.25 picoseconds and an amplitude of 3 degrees in excellent
agreement with theoretical calculations. At larger times the quantum states of
the molecules describing the torsional motion dephase and an almost isotropic
distribution of the dihedral angle is measured. We demonstrate an original
application of covariance analysis of two-dimensional ion images to reveal
strong correlations between specific ejected ionic fragments from Coulomb
explosion. This technique strengthens our interpretation of the experimental
data.Comment: 11 pages, 9 figure
Further studies of stall flutter and nonlinear divergence of two-dimensional wings
An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle
- …