18,263 research outputs found
Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses
Although the genetic organization of tobacco mosaic virus (TMV) differs considerably from that of the tripartite viruses (alfalfa mosaic virus [AlMV] and brome mosaic virus [BMV]), all of these RNA plant viruses share three domains of homology among their nonstructural proteins. One such domain, common to the AlMV and BMV 2a proteins and the readthrough portion of TMV p183, is also homologous to the readthrough protein nsP4 of Sindbis virus (Haseloff et al., Proc. Natl. Acad. Sci. U.S.A. 81:4358-4362, 1984). Two more domains are conserved among the AlMV and BMV 1a proteins and TMV p126. We show here that these domains have homology with portions of the Sindbis proteins nsP1 and nsP2, respectively. These results strengthen the view that the four viruses share mechanistic similarities in their replication strategies and may be evolutionarily related. These results also suggest that either the AlMV 1a, BMV 1a, and TMV p126 proteins are multifunctional or Sindbis proteins nsP1 and nsP2 function together as subunits in a single complex
Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes
Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl
precursors have been tested as support films for energy-filtered transmission
electron microscopy (EFTEM) of biological specimens. Due to their high
transparency CNM are ideal substrates for electron energy loss spectroscopy
(EELS) and electron spectroscopic imaging (ESI) of stained and unstained
biological samples. Virtually background-free elemental maps of tobacco mosaic
virus (TMV) and ferritin have been obtained from samples supported by ~ 1 nm
thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM)
comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as
supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded
TMV on cCNM and compared the results with images of ice-embedded TMV on
conventional carbon film (CC), thus analyzing the gain in contrast for TMV on
cCNM in a quantitative manner. In addition we have developed a method for the
preparation of vitrified specimens, suspended over the holes of a conventional
holey carbon film, while backed by ultrathin cCNM
Infectivity decline of an RNA plant virus by increased mutagenesis supports the lethal defection model in vivo
Lethal mutagenesis is a new antiviral therapy based on increasing the mutation rate by using mutagenic base and nucleoside analogues whose molecular mechanisms are not fully understood. Most of the research has been conducted on animal RNA viruses in cell culture and, to a lesser extent, in vivo. There is experimental evidence supporting the model of lethal defection for lethal mutagenesis of RNA viruses. In this model, viral genomes with a low degree of mutation and low specific infectivity, termed "defectors", exert an interfering activity leading to virus loss. Lethal mutagenesis of plant viruses has not been addressed yet despite being excellent in vivo model systems that develop systemic infections, undergo rapid bottlenecks and pose no ethical issues.
Here, we address lethal mutagenesis in vivo of Tobacco mosaic virus (TMV), a single-stranded positive RNA virus of 6.4 Kb. Nicotiana tabacum plants cultured in vitro were treated with 25, 50 and 100 µg/ml of the base analogue 5-fluorouracil (FU) and 24 h later were inoculated with 50 lesion forming units (lfu) of TMV. We analyzed the infectivity, viral load and mutant spectra of viral populations after 5 and 10 days of treatment, as well as of populations that went 10 days of treatment followed by 21 days of ex vitro growth in the absence of FU.
The results show that TMV infectivity decreases when treated with 50 and 100 µg/ml FU for 10 days. TMV mutagenized populations grown without FU reach infectivity values higher than untreated populations. Predominant mutations in FU-treated populations with decreased infectivity at 10 dpi are U→C, A→G and G→A transitions, which are expected due to the action of FU. TMV replication is not affected by FU at any dose and there are no imbalances of ribonucleotide triphosphate pools measured by HPLC. No differences in mutation frequencies and Shannon Entropies between control and FU-treated populations with declined infectivity were found. However, we did found a dose-dependent decrease of specific infectivity in FU-treated populations, but not in untreated samples, as well as dominance of molecules with a low degree of mutation. Specific infectivity recovered to control levels after 21 days of growth without the analogue. Altogether, our results suggest that TMV defector molecules mediate the decrease in TMV infectivity. This is the first report that addresses the molecular basis of lethal defection in vivo using an RNA plant virus.Junta de AndalucÃa (P09-CVI-5428 y P10-CVI-6561), Plan Nacional I+D+i (BFU2007-65080 BMC) y Universidad de Málaga (Plan propio
Molecular Mechanics Simulations and Improved Tight-binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment
We present molecular mechanics {and spectroscopic} calculations on prototype
artificial light harvesting systems consisting of chromophores attached to a
tobacco mosaic virus (TMV) protein scaffold. These systems have been
synthesized and characterized spectroscopically, but information about the
microscopic configurations and geometry of these TMV-templated chromophore
assemblies is largely unknown. We use a Monte Carlo conformational search
algorithm to determine the preferred positions and orientations of two
chromophores, Coumarin 343 together with its linker, and Oregon Green 488, when
these are attached at two different sites (104 and 123) on the TMV protein. The
resulting geometric information shows that the extent of disorder and
aggregation properties, and therefore the optical properties of the
TMV-templated chromophore assembly, are highly dependent on the choice of
chromophores and protein site to which they are bound. We used the results of
the conformational search as geometric parameters together with an improved
tight-binding Hamiltonian to simulate the linear absorption spectra and compare
with experimental spectral measurements. The ideal dipole approximation to the
Hamiltonian is not valid since the distance between chromophores can be very
small. We found that using the geometries from the conformational search is
necessary to reproduce the features of the experimental spectral peaks
Deposition of platinum clusters on surface-modified tobacco mosaic virus
Nanoscaled Pt conductors were prepared from genetically engineered Tobacco mosaic virus (TMV) templates through Pt cluster deposition on the outer surface of the TMV. Pt clusters were synthesized and deposited on the engineered TMV with surface-exposed cysteine via the in situ mineralization of hexachloroplatinate anions. This deposition was driven by the specific binding between thiols and the solid metal clusters. In addition, Pt-thiolate adducts are suggested to form on the engineered TMV in aqueous solutions that work as nucleation sites for the formation of the Pt clusters. The specific binding between Pt clusters and the engineered TMV template was investigated using UV/vis spectrophotometry and quartz crystal microbalance (QCM) analysis. The electric conductance of Pt-deposited TMV was greater than that of the uncoated TMV virion particles. This result suggests the application of metal cluster-deposited engineered TMV in future electrical devices such as rapid response sensors
Tumor-Derived Microvesicles Induce, Expand and Up-Regulate Biological Activities of Human Regulatory T Cells (Treg)
Background: Tumor-derived microvesicles (TMV) or exosomes are present in body fluids of patients with cancer and might be involved in tumor progression. The frequency and suppressor functions of peripheral blood CD4 + CD25 high FOXP3 + Treg are higher in patients with cancer than normal controls. The hypothesis is tested that TMV contribute to induction/ expansion/and activation of human Treg. Methodology/Principal Findings: TMV isolated from supernatants of tumor cells but not normal cells induced the generation and enhanced expansion of human Treg. TMV also mediated conversion of CD4 + CD25 neg T cells into CD4 + CD25 high FOXP3 + Treg. Upon co-incubation with TMV, Treg showed an increased FasL, IL-10, TGF-b1, CTLA-4, granzyme B and perforin expression (p,0.05) and mediated stronger suppression of responder cell (RC) proliferation (p,0.01). Purified Treg were resistant to TMV-mediated apoptosis relative to other T cells. TMV also increased phospho-SMAD2/3 and phospho-STAT3 expression in Treg. Neutralizing Abs specific for TGF-b1 and/or IL-10 significantly inhibited TMV ability to expand Treg. Conclusions/Significance: This study suggests that TMV have immunoregulatory properties. They induce Treg, promote Treg expansion, up-regulate Treg suppressor function and enhance Treg resistance to apoptosis. Interactions of TMV wit
- …