49,936 research outputs found

    Binary and Ternary Quasi-perfect Codes with Small Dimensions

    Full text link
    The aim of this work is a systematic investigation of the possible parameters of quasi-perfect (QP) binary and ternary linear codes of small dimensions and preparing a complete classification of all such codes. First we give a list of infinite families of QP codes which includes all binary, ternary and quaternary codes known to is. We continue further with a list of sporadic examples of binary and ternary QP codes. Later we present the results of our investigation where binary QP codes of dimensions up to 14 and ternary QP codes of dimensions up to 13 are classified.Comment: 4 page

    A description of n-ary semigroups polynomial-derived from integral domains

    Get PDF
    We provide a complete classification of the n-ary semigroup structures defined by polynomial functions over infinite commutative integral domains with identity, thus generalizing G{\l}azek and Gleichgewicht's classification of the corresponding ternary semigroups

    The codes and the lattices of Hadamard matrices

    Get PDF
    It has been observed by Assmus and Key as a result of the complete classification of Hadamard matrices of order 24, that the extremality of the binary code of a Hadamard matrix H of order 24 is equivalent to the extremality of the ternary code of H^T. In this note, we present two proofs of this fact, neither of which depends on the classification. One is a consequence of a more general result on the minimum weight of the dual of the code of a Hadamard matrix. The other relates the lattices obtained from the binary code and from the ternary code. Both proofs are presented in greater generality to include higher orders. In particular, the latter method is also used to show the equivalence of (i) the extremality of the ternary code, (ii) the extremality of the Z_4-code, and (iii) the extremality of a lattice obtained from a Hadamard matrix of order 48.Comment: 16 pages. minor revisio
    corecore