36,112 research outputs found
Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function
Background
Human S100A12 is a member of the S100 family of EF-hand calcium-modulated proteins that are associated with many diseases including cancer, chronic inflammation and neurological disorders. S100A12 is an important factor in host/parasite defenses and in the inflammatory response. Like several other S100 proteins, it binds zinc and copper in addition to calcium. Mechanisms of zinc regulation have been proposed for a number of S100 proteins e.g. S100B, S100A2, S100A7, S100A8/9. The interaction of S100 proteins with their targets is strongly dependent on cellular microenvironment.
Results
The aim of the study was to explore the factors that influence S100A12 oligomerization and target interaction. A comprehensive series of biochemical and biophysical experiments indicated that changes in the concentration of calcium and zinc led to changes in the oligomeric state of S100A12. Surface plasmon resonance confirmed that the presence of both calcium and zinc is essential for the interaction of S100A12 with one of its extracellular targets, RAGE – the Receptor for Advanced Glycation End products. By using a single-molecule approach we have shown that the presence of zinc in tissue culture medium favors both the oligomerization of exogenous S100A12 protein and its interaction with targets on the cell surface.
Conclusion
We have shown that oligomerization and target recognition by S100A12 is regulated by both zinc and calcium. Our present work highlighted the potential role of calcium-binding S100 proteins in zinc metabolism and, in particular, the role of S100A12 in the cross talk between zinc and calcium in cell signaling
Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis
Divalent metal ions such as copper, manganese, and cobalt are essential for cell development, differentiation, function and survival. These essential metal ions are delivered into intracellular domains as cofactors for enzymes involved in neuropeptide and neurotransmitter synthesis, superoxide metabolism, and other biological functions in a target specific fashion. Altering the homeostasis of these essential metal ions is known to connect to a number of human diseases including Alzheimer disease, amyotrophic lateral sclerosis, and pain. It remains unclear how these essential metal ions are delivered to intracellular targets in mammalian cells. Here we report that rat spinal cord dorsal horn neurons express ACDP4, a member of Ancient Conserved Domain Protein family. By screening a pretransformed human fetal brain cDNA library in a yeast two-hybrid system, we have identified that ACDP4 specifically interacts with COX11, an intracellular metal ion chaperone. Ectopic expression of ACDP4 in HEK293 cells resulted in enhanced toxicity to metal ions including copper, manganese, and cobalt. The metal ion toxicity became more pronounced when ACDP4 and COX11 were co-expressed ectopically in HEK293 cells, suggesting a functional coupling between them. Our results indicate a role of ACDP4 in metal ion homeostasis and toxicity. This is the first report revealing a functional aspect of this ancient conserved domain protein family. We propose that ACDP is a family of transporter protein or chaperone proteins for delivering essential metal ions in different mammalian tissues. The expression of ACDP4 on spinal cord dorsal horn neurons may have implications in sensory neuron functions under physiological and pathological conditions
Metallochaperones regulate intracellular copper levels.
Copper (Cu) is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes
Bioinorganic Chemistry
This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material at a more advanced level than that of bioinorganic textbooks published previously, the chapters are not specialized review articles. What we have attempted to do in each chapter is to teach the underlying principles of bioinorganic chemistry as well as outlining the state of knowledge in selected areas.
We have chosen not to include abbreviated summaries of the inorganic chemistry, biochemistry, and spectroscopy that students may need as background in order to master the material presented. We instead assume that the instructor using this book will assign reading from relevant sources that is appropriate to the background of the students taking the course.
For the convenience of the instructors, students, and other readers of this book, we have included an appendix that lists references to reviews of the research literature that we have found to be particularly useful in our courses on bioinorganic chemistry
Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses
The molecular responses of macrophages to copper-based nanoparticles have
been investigated via a combination of proteomic and biochemical approaches,
using the RAW264.7 cell line as a model. Both metallic copper and copper oxide
nanoparticles have been tested, with copper ion and zirconium oxide
nanoparticles used as controls. Proteomic analysis highlighted changes in
proteins implicated in oxidative stress responses (superoxide dismutases and
peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and
mitochondrial proteins (especially oxidative phosphorylation complex subunits).
Validation studies employing functional analyses showed that the increases in
glutathione biosynthesis and in mitochondrial complexes observed in the
proteomic screen were critical to cell survival upon stress with copper-based
nanoparticles; pharmacological inhibition of these two pathways enhanced cell
vulnerability to copper-based nanoparticles, but not to copper ions.
Furthermore, functional analyses using primary macrophages derived from bone
marrow showed a decrease in reduced glutathione levels, a decrease in the
mitochondrial transmembrane potential, and inhibition of phagocytosis and of
lipopolysaccharide-induced nitric oxide production. However, only a fraction of
these effects could be obtained with copper ions. In conclusion, this study
showed that macrophage functions are significantly altered by copper-based
nanoparticles. Also highlighted are the cellular pathways modulated by cells
for survival and the exemplified cross-toxicities that can occur between
copper-based nanoparticles and pharmacological agents
Defining the organizational structure of dopamine and muscarninic acetylcholine receptors
No abstract available
Transcriptional regulation of copper metabolism genes in the liver of fetal and neonatal control and iron-deficient rats
Acknowledgments The authors’ work is supported by Scottish Government (Rural and Environmental Scientific and Analytical Services). We are grateful to Ms Val Stevens for analytical and technical assistance and to the Biological Resource Facility staff for husbandry and maintenance of the experimental animals. The authors declare no conflicts of interest. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPublisher PD
Exploring the cellular accumulation of metal complexes
Transition metal complexes offer great potential as diagnostic and therapeutic agents, and a growing number of biological applications have been explored. To be effective, these complexes must reach their intended target inside the cell. Here we review the cellular accumulation of metal complexes, including their uptake, localization, and efflux. Metal complexes are taken up inside cells through various mechanisms, including passive diffusion and entry through organic and metal transporters. Emphasis is placed on the methods used to examine cellular accumulation, to identify the mechanism(s) of uptake, and to monitor possible efflux. Conjugation strategies that have been employed to improve the cellular uptake characteristics of metal complexes are also described
Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections
This work was supported by the European Research Council (http://erc.europa.eu/: STRIFE Advanced Grant ERC-2009-AdG-249793). A.J.P.B. was also supported by the UK Biotechnology and Biological Research Council (www.bbsrc.ac.uk: Research Grants BB/F00513X/1, BB/K017365/1), the UK Medical Research Council (www.mrc.ac.uk: Programme Grant MR/M026663/1; Centre Grant MR/ N006364/1), and the Wellcome Trust (www.wellcome.ac.uk: Strategic Award 097377)Peer reviewedPublisher PD
- …