147,906 research outputs found

    Hitting Time of Quantum Walks with Perturbation

    Full text link
    The hitting time is the required minimum time for a Markov chain-based walk (classical or quantum) to reach a target state in the state space. We investigate the effect of the perturbation on the hitting time of a quantum walk. We obtain an upper bound for the perturbed quantum walk hitting time by applying Szegedy's work and the perturbation bounds with Weyl's perturbation theorem on classical matrix. Based on the definition of quantum hitting time given in MNRS algorithm, we further compute the delayed perturbed hitting time (DPHT) and delayed perturbed quantum hitting time (DPQHT). We show that the upper bound for DPQHT is actually greater than the difference between the square root of the upper bound for a perturbed random walk and the square root of the lower bound for a random walk.Comment: 9 page

    Acoustic methods for measuring bullet velocity

    Full text link
    This article describes two acoustic methods to measure bullet velocity with an accuracy of 1% or better. In one method, a microphone is placed within 0.1 m of the gun muzzle and a bullet is fired at a steel target 45 m away. The bullet's flight time is the recorded time between the muzzle blast and sound of hitting the target minus the time for the sound to return from the target to the microphone. In the other method, the microphone is placed equidistant from both the gun muzzle and the steel target 91 m away. The time of flight is the recorded time between the muzzle blast and the sound of the bullet hitting the target. In both cases, the average bullet velocity is simply the flight distance divided by the flight time

    Maximizing the probability of attaining a target prior to extinction

    Full text link
    We present a dynamic programming-based solution to the problem of maximizing the probability of attaining a target set before hitting a cemetery set for a discrete-time Markov control process. Under mild hypotheses we establish that there exists a deterministic stationary policy that achieves the maximum value of this probability. We demonstrate how the maximization of this probability can be computed through the maximization of an expected total reward until the first hitting time to either the target or the cemetery set. Martingale characterizations of thrifty, equalizing, and optimal policies in the context of our problem are also established.Comment: 22 pages, 1 figure. Revise

    Exploring an Infinite Space with Finite Memory Scouts

    Full text link
    Consider a small number of scouts exploring the infinite dd-dimensional grid with the aim of hitting a hidden target point. Each scout is controlled by a probabilistic finite automaton that determines its movement (to a neighboring grid point) based on its current state. The scouts, that operate under a fully synchronous schedule, communicate with each other (in a way that affects their respective states) when they share the same grid point and operate independently otherwise. Our main research question is: How many scouts are required to guarantee that the target admits a finite mean hitting time? Recently, it was shown that d+1d + 1 is an upper bound on the answer to this question for any dimension d1d \geq 1 and the main contribution of this paper comes in the form of proving that this bound is tight for d{1,2}d \in \{ 1, 2 \}.Comment: Added (forgotten) acknowledgement

    Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility

    Get PDF
    We study the hitting times of Markov processes to target set GG, starting from a reference configuration x0x_0 or its basin of attraction. The configuration x0x_0 can correspond to the bottom of a (meta)stable well, while the target GG could be either a set of saddle (exit) points of the well, or a set of further (meta)stable configurations. Three types of results are reported: (1) A general theory is developed, based on the path-wise approach to metastability, which has three important attributes. First, it is general in that it does not assume reversibility of the process, does not focus only on hitting times to rare events and does not assume a particular starting measure. Second, it relies only on the natural hypothesis that the mean hitting time to GG is asymptotically longer than the mean recurrence time to x0x_0 or GG. Third, despite its mathematical simplicity, the approach yields precise and explicit bounds on the corrections to exponentiality. (2) We compare and relate different metastability conditions proposed in the literature so to eliminate potential sources of confusion. This is specially relevant for evolutions of infinite-volume systems, whose treatment depends on whether and how relevant parameters (temperature, fields) are adjusted. (3) We introduce the notion of early asymptotic exponential behavior to control time scales asymptotically smaller than the mean-time scale. This control is particularly relevant for systems with unbounded state space where nucleations leading to exit from metastability can happen anywhere in the volume. We provide natural sufficient conditions on recurrence times for this early exponentiality to hold and show that it leads to estimations of probability density functions
    corecore