2,888,817 research outputs found
Target Mass Effects in Polarized Deep Inelastic Scattering
The target mass effects in polarized DIS have been studied. It was
demonstrated that taking into account the first order target mass corrections
to g1 a very good approximation of the exact formula is achieved. It was also
shown that their magnitude in the preasymptotic DIS region is small except for
x > 0.65, where their large effect is partially suppressed by the large values
of due to the cut . The difference between the size of the
target mass and higher twist corrections is illustrated.Comment: 8 pages, LaTeX, 5 figures, typo in Eq. 3 corrected, comment added, to
appear in Mod. Phys. Lett.
Target mass effects in polarized deep-inelastic scattering
We present a computation of nucleon mass corrections to nucleon structure
functions for polarized deep-inelastic scattering. We perform a fit to existing
data including mass corrections at first order in and we study the
effect of these corrections on physically interesting quantities. We conclude
that mass corrections are generally small, and compatible with current
estimates of higher twist uncertainties, when available.Comment: 22 pages Latex, uses epsfig.sty, 10 eps figures include
Target effects in negative-continuum assisted dielectronic recombination
The process of recombination of a quasi-free electron into a bound state of
an initially bare nucleus with the simultaneous creation of a
bound-electron--free-positron pair is investigated. This process is called the
negative-continuum assisted dielectronic recombination (NCDR). In a typical
experimental setup, the initial electron is not free but bound in a light
atomic target. In the present work, we study the effects of the atomic target
on the single and double-differential cross sections of the positron production
in the NCDR process. The calculations are performed within the relativistic
framework based on QED theory, with accounting for the electron-electron
interaction to first order in perturbation theory. We demonstrate how the
momentum distribution of the target electrons removes the non-physical
singularity of the differential cross section which occurs for the initially
free and monochromatic electrons
Target shape effects on monoenergetic GeV proton acceleration
When a circularly polarized laser pulse interacts with a foil target, there
are three stages: pre-hole-boring, hole-boring and the light sail acceleration.
We study the electron and ion dynamics in the first stage and find the minimum
foil thickness requirement for a given laser intensity. Based on this analysis,
we propose to use a shaped foil for ion acceleration, whose thickness varies
transversely to match the laser intensity. Then, the target evolves into three
regions: the acceleration, transparency and deformation regions. In the
acceleration region, the target can be uniformly accelerated producing a
mono-energetic and spatially collimated ion beam. Detailed numerical
simulations are performed to check the feasibility and robustness of this
scheme, such as the influence of shape factors and surface roughness. A GeV
mono-energetic proton beam is observed in the three dimensional
particle-in-cell simulations when a laser pulse with the focus intensity of
1022W=cm2 is used. The energy conversion efficiency of laser pulse to
accelerated proton beam is more than 23%. Synchrotron radiation and damping
effects are also checked in the interaction.Comment: 11 pages, 9 figure
Target Mass Effects in Polarized Virtual Photon Structure Functions
We study target mass effects in the polarized virtual photon structure
functions , in the kinematic
region , where is the mass squared of
the probe (target) photon. We obtain the expressions for and in closed form by inverting the
Nachtmann moments for the twist-2 and twist-3 operators. Numerical analysis
shows that target mass effects appear at large and become sizable near
, the maximal value of , as the ratio
increases. Target mass effects for the sum rules of and
are also discussed.Comment: 24 pages, LaTeX, 9 eps figure
Effects of Fungicides for Non Target Fungi Alternaria cassiae
The fungicides are used to control of pathogenic fungi in several tilth but they can affect negatively the microorganisms diversity of soil. The aim of this research was to evaluate the toxicity and environmental risk of tebuconazoles: captan, tebuconazole and the mixture chlorothalonil + propamocarb hidrochloride for fungi Alternaria cassiae. Each fungicide were performed three experiments in completely randomized design with three repetitions and the growth was evaluated daily. Inhibition concentration (IC50;7d) of tebuconazole was 3.49 mg L-1, the captan was 47.36 mg L-1 and of mixture chlorothalonil + propamocarb hidrochloride, 64.04 mg L-1. Tebuconazole is classified as moderately toxic and sensitivity, captan, low toxicity and sensitivity and the mixture, non toxic and insensitive but only captan showed possibility of adverse effect for A. cassiae
Effects of age and eccentricity on visual target detection
The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20–78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance
Recommended from our members
Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements.
Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor. Rather, these sgRNAs had high off-target activity that, while only weakly correlated with absolute off-target site number, could be predicted by the recently developed GuideScan specificity score. Screens conducted in parallel with CRISPRi/a, which do not induce double-stranded DNA breaks, revealed that a distinct set of off-targets also cause strong confounding fitness effects with these epigenome-editing tools. Promisingly, filtering of CRISPRi libraries using GuideScan specificity scores removed these confounded sgRNAs and enabled identification of essential regulatory elements
- …