1,710,927 research outputs found

    Synthetic worlds, synthetic strategies: attaining creativity in the metaverse

    Get PDF
    This text will attempt to delineate the underlying theoretical premises and the definition of the output of an immersive learning approach pertaining to the visual arts to be implemented in online, three dimensional synthetic worlds. Deviating from the prevalent practice of the replication of physical art studio teaching strategies within a virtual environment, the author proposes instead to apply the fundamental tenets of Roy Ascott’s “Groundcourse”, in combination with recent educational approaches such as “Transformative Learning” and “Constructionism”. In an amalgamation of these educational approaches with findings drawn from the fields of Metanomics, Ludology, Cyberpsychology and Presence Studies, as well as an examination of creative practices manifest in the metaverse today, the formulation of a learning strategy for creative enablement unique to online, three dimensional synthetic worlds; one which will focus upon “Play” as well as Role Play, virtual Assemblage and the visual identity of the avatar within the pursuits, is being proposed in this chapter

    Synthetic worlds, synthetic strategies: attaining creativity in the metaverse

    Get PDF
    This text will attempt to delineate the underlying theoretical premises and the definition of the output of an immersive learning approach pertaining to the visual arts to be implemented in online, three dimensional synthetic worlds. Deviating from the prevalent practice of the replication of physical art studio teaching strategies within a virtual environment, the author proposes instead to apply the fundamental tenets of Roy Ascott’s “Groundcourse”, in combination with recent educational approaches such as “Transformative Learning” and “Constructionism”. In an amalgamation of these educational approaches with findings drawn from the fields of Metanomics, Ludology, Cyberpsychology and Presence Studies, as well as an examination of creative practices manifest in the metaverse today, the formulation of a learning strategy for creative enablement unique to online, three dimensional synthetic worlds; one which will focus upon “Play” as well as Role Play, virtual Assemblage and the visual identity of the avatar within the pursuits, is being proposed in this chapter

    Synthetic Generation of Events for Address-Event-Representation Communications

    Get PDF
    Address-Event-Representation (AER) is a communications protocol for transferring images between chips, originally developed for bio-inspired image processing systems. Such systems may consist of a complicated hierarchical structure with many chips that transmit images among them in real time, while performing some processing (for example, convolutions). In developing AER based systems it is very convenient to have available some kind of means of generating AER streams from on-computer stored images. In this paper we present a method for generating AER streams in real time from images stored in a computer’s memory. The method exploits the concept of linear feedback shift register random number generators. This method has been tested by software and compared to other possible algorithms for generating AER streams. It has been found that the proposed method yields a minimum error with respect to the ideal situation. A hardware platform that exploits this technique is currently under development

    Synthetic retina for AER systems development

    Get PDF
    Neuromorphic engineering tries to mimic biology in information processing. Address-Event Representation (AER) is a neuromorphic communication protocol for spiking neurons between different layers. AER bio-inspired image sensor are called “retina”. This kind of sensors measure visual information not based on frames from real life and generates corresponding events. In this paper we provide an alternative, based on cheap FPGA, to this image sensors that takes images provided by an analog video source (video composite signal), digitalizes it and generates AER streams for testing purposes.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    Synthetic Cells, Synthetic Life, and Inheritance

    Get PDF

    Synthetic gauge fields in synthetic dimensions

    Full text link
    We describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field. Our method is to extend a one-dimensional optical lattice into the "dimension" provided by the internal atomic degrees of freedom, yielding a synthetic 2D lattice. Suitable laser-coupling between these internal states leads to a uniform magnetic flux within the 2D lattice. We show that this setup reproduces the main features of magnetic lattice systems, such as the fractal Hofstadter butterfly spectrum and the chiral edge states of the associated Chern insulating phases.Comment: 5+4 pages, 5+3 figures, two-column revtex; v2: discussion of role of interactions added, Fig. 1 reshaped, minor changes, references adde

    Synthetic generation of address-events for real-time image processing

    Get PDF
    Address-event-representation (AER) is a communication protocol that emulates the nervous system's neurons communication, and that is typically used for transferring images between chips. It was originally developed for bio-inspired and real-time image processing systems. Such systems may consist of a complicated hierarchical structure with many chips that transmit images among them in real time, while performing some processing. In this paper several software methods for generating AER streams from images stored in a computer's memory are presented. A hardware version that works in real-time is also being studied. All of them have been evaluated and compared.ComisiĂłn Europea IST-2001-34102

    Synthetic biology: advancing biological frontiers by building synthetic systems

    Get PDF
    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field

    Thermodynamic modelling of synthetic communities predicts minimum free energy requirements for sulfate reduction and methanogenesis

    Get PDF
    Microbial communities are complex dynamical systems harbouring many species interacting together to implement higher-level functions. Among these higher-level functions, conversion of organic matter into simpler building blocks by microbial communities underpins biogeochemical cycles and animal and plant nutrition, and is exploited in biotechnology. A prerequisite to predicting the dynamics and stability of community-mediated metabolic conversions is the development and calibration of appropriate mathematical models. Here, we present a generic, extendable thermodynamic model for community dynamics and calibrate a key parameter of this thermodynamic model, the minimum energy requirement associated with growth-supporting metabolic pathways, using experimental population dynamics data from synthetic communities composed of a sulfate reducer and two methanogens. Our findings show that accounting for thermodynamics is necessary in capturing the experimental population dynamics of these synthetic communities that feature relevant species using low energy growth pathways. Furthermore, they provide the first estimates for minimum energy requirements of methanogenesis (in the range of −30 kJ mol−1) and elaborate on previous estimates of lactate fermentation by sulfate reducers (in the range of −30 to −17 kJ mol−1 depending on the culture conditions). The open-source nature of the developed model and demonstration of its use for estimating a key thermodynamic parameter should facilitate further thermodynamic modelling of microbial communities
    • 

    corecore