1,148,624 research outputs found
Programmable electronic synthesized capacitance
A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise
Reactanceless synthesized impedance bandpass amplifier
An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers
Superconducting Properties of Combustion Synthesized MgB2
We have successfully prepared the MgB2 superconducting bulk and powdered
materials by the method of combustion synthesis. The starting materials used in
this study were powders of Mg and B. X-ray powder diffraction pattern was well
assigned to the P6/mmm MgB2 phase. The temperature dependence of magnetization
shows sharp superconducting transition around 38K. The critical current density
can be estimated from the hysteresis of the magnetization curvature using the
Bean's model. The powdered sample shows a high critical current density of
2x10^6 A/cm2 at 5K under the magnetic field of 1T.Comment: 5 pages, 7 figures, PDF fil
Generalized Zero-Shot Learning via Synthesized Examples
We present a generative framework for generalized zero-shot learning where
the training and test classes are not necessarily disjoint. Built upon a
variational autoencoder based architecture, consisting of a probabilistic
encoder and a probabilistic conditional decoder, our model can generate novel
exemplars from seen/unseen classes, given their respective class attributes.
These exemplars can subsequently be used to train any off-the-shelf
classification model. One of the key aspects of our encoder-decoder
architecture is a feedback-driven mechanism in which a discriminator (a
multivariate regressor) learns to map the generated exemplars to the
corresponding class attribute vectors, leading to an improved generator. Our
model's ability to generate and leverage examples from unseen classes to train
the classification model naturally helps to mitigate the bias towards
predicting seen classes in generalized zero-shot learning settings. Through a
comprehensive set of experiments, we show that our model outperforms several
state-of-the-art methods, on several benchmark datasets, for both standard as
well as generalized zero-shot learning.Comment: Accepted in CVPR'1
Towards a synthesized critique of neoliberal biodiversity conservation
During the last three decades, the arena of biodiversity conservation has largely aligned itself with the globally dominant political ideology of neoliberalism and associated governmentalities. Schemes such as payments for ecological services are promoted to reach the multiple ‘wins’ so desired: improved biodiversity conservation, economic development, (international) cooperation and poverty alleviation, amongst others. While critical scholarship with respect to understanding the linkages between neoliberalism, capitalism and the environment has a long tradition, a synthesized critique of neoliberal conservation - the ideology (and related practices) that the salvation of nature requires capitalist expansion - remains lacking. This paper aims to provide such a critique. We commence with the assertion that there has been a conflation between ‘economics’ and neoliberal ideology in conservation thinking and implementation. As a result, we argue, it becomes easier to distinguish the main problems that neoliberal win-win models pose for biodiversity conservation. These are framed around three points: the stimulation of contradictions; appropriation and misrepresentation and the disciplining of dissent. Inspired by Bruno Latour’s recent ‘compositionist manifesto’, the conclusion outlines some ideas for moving beyond critique
Room temperature ferromagnetism in chemically synthesized ZnO rods
We report structural and magnetic properties of pure ZnO rods using X-ray
diffraction (XRD), magnetization hysteresis (M-H) loop and near edge x-ray fine
structure spectroscopy (NEXAFS) study at O K edge. Sample of ZnO was prepared
by co-precipitation method. XRD and selective area electron diffraction
measurements infer that ZnO rods exhibit a single phase polycrystalline nature
with wurtzite lattice. Field emission transmission electron microscopy, field
emission scanning electron microscopy micrographs infers that ZnO have rod type
microstructures with dimension 200 nm in diameter and 550 nm in length. M-H
loop studies performed at room temperature display room temperature
ferromagnetism in ZnO rods. NEXAFS study reflects absence of the oxygen
vacancies in pure ZnO rods.Comment: 8 Pages, 3 Figure
Synthesized grain size distribution in the interstellar medium
We examine a synthetic way of constructing the grain size distribution in the
interstellar medium (ISM). First we formulate a synthetic grain size
distribution composed of three grain size distributions processed with the
following mechanisms that govern the grain size distribution in the Milky Way:
(i) grain growth by accretion and coagulation in dense clouds, (ii) supernova
shock destruction by sputtering in diffuse ISM, and (iii) shattering driven by
turbulence in diffuse ISM. Then, we examine if the observational grain size
distribution in the Milky Way (called MRN) is successfully synthesized or not.
We find that the three components actually synthesize the MRN grain size
distribution in the sense that the deficiency of small grains by (i) and (ii)
is compensated by the production of small grains by (iii). The fraction of each
{contribution} to the total grain processing of (i), (ii), and (iii) (i.e., the
relative importance of the three {contributions} to all grain processing
mechanisms) is 30-50%, 20-40%, and 10-40%, respectively. We also show that the
Milky Way extinction curve is reproduced with the synthetic grain size
distributions.Comment: 10 pages, 6 figures, accepted for publication in Earth, Planets, and
Spac
- …