43,931 research outputs found
Patterns in syntactic dependency networks
Many languages are spoken on Earth. Despite their diversity, many robust language universals are known to exist. All languages share syntax, i.e., the ability of combining words for forming sentences. The origin of such traits is an issue of open debate. By using recent developments from the statistical physics of complex networks, we show that different syntactic dependency networks (from Czech, German, and Romanian) share many nontrivial statistical patterns such as the small world phenomenon, scaling in the distribution of degrees, and disassortative mixing. Such previously unreported features of syntax organization are not a trivial consequence of the structure of sentences, but an emergent trait at the global scale.Peer ReviewedPostprint (published version
Exploiting Rich Syntactic Information for Semantic Parsing with Graph-to-Sequence Model
Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a
sequential LSTM, to extract word order features while neglecting other valuable
syntactic information such as dependency graph or constituent trees. In this
paper, we first propose to use the \textit{syntactic graph} to represent three
types of syntactic information, i.e., word order, dependency and constituency
features. We further employ a graph-to-sequence model to encode the syntactic
graph and decode a logical form. Experimental results on benchmark datasets
show that our model is comparable to the state-of-the-art on Jobs640, ATIS and
Geo880. Experimental results on adversarial examples demonstrate the robustness
of the model is also improved by encoding more syntactic information.Comment: EMNLP'1
Dependency relations as source context in phrase-based SMT
The Phrase-Based Statistical Machine Translation (PB-SMT) model has recently begun to include source context modeling, under the assumption that the proper lexical
choice of an ambiguous word can be determined from the context in which it appears. Various types of lexical and syntactic features such as words, parts-of-speech, and
supertags have been explored as effective source context in SMT. In this paper, we show that position-independent syntactic dependency relations of the head of a source phrase can be modeled as useful source context to improve target phrase selection and thereby improve overall performance of PB-SMT. On a Dutch—English translation task, by combining dependency relations and syntactic contextual features (part-of-speech), we achieved a 1.0 BLEU (Papineni et al., 2002) point improvement (3.1% relative) over the baseline
Syntactic Topic Models
The syntactic topic model (STM) is a Bayesian nonparametric model of language
that discovers latent distributions of words (topics) that are both
semantically and syntactically coherent. The STM models dependency parsed
corpora where sentences are grouped into documents. It assumes that each word
is drawn from a latent topic chosen by combining document-level features and
the local syntactic context. Each document has a distribution over latent
topics, as in topic models, which provides the semantic consistency. Each
element in the dependency parse tree also has a distribution over the topics of
its children, as in latent-state syntax models, which provides the syntactic
consistency. These distributions are convolved so that the topic of each word
is likely under both its document and syntactic context. We derive a fast
posterior inference algorithm based on variational methods. We report
qualitative and quantitative studies on both synthetic data and hand-parsed
documents. We show that the STM is a more predictive model of language than
current models based only on syntax or only on topics
- …