892,403 research outputs found
Morphology of two dimensional fracture surface
We consider the morphology of two dimensional cracks observed in experimental
results obtained from paper samples and compare these results with the
numerical simulations of the random fuse model (RFM). We demonstrate that the
data obey multiscaling at small scales but cross over to self-affine scaling at
larger scales. Next, we show that the roughness exponent of the random fuse
model is recovered by a simpler model that produces a connected crack, while a
directed crack yields a different result, close to a random walk. We discuss
the multiscaling behavior of all these models.Comment: slightly revise
Graphene formed on SiC under various environments: Comparison of Si-face and C-face
The morphology of graphene on SiC {0001} surfaces formed in various
environments including ultra-high vacuum, 1 atm of argon, and 10^-6 to 10^-4
Torr of disilane is studied by atomic force microscopy, low-energy electron
microscopy, and Raman spectroscopy. The graphene is formed by heating the
surface to 1100 - 1600 C, which causes preferential sublimation of the Si
atoms. The argon atmosphere or the background of disilane decreases the
sublimation rate so that a higher graphitization temperature is required, thus
improving the morphology of the films. For the (0001) surface, large areas of
monolayer-thick graphene are formed in this way, with the size of these areas
depending on the miscut of the sample. Results on the (000-1) surface are more
complex. This surface graphitizes at a lower temperature than for the (0001)
surface and consequently the growth is more three-dimensional. In an atmosphere
of argon the morphology becomes even worse, with the surface displaying
markedly inhomogeneous nucleation, an effect attributed to unintentional
oxidation of the surface during graphitization. Use of a disilane environment
for the (000-1) surface is found to produce improved morphology, with
relatively large areas of monolayer-thick graphene.Comment: 22 pages, 11 figures, Proceedings of STEG-2 Conference; eliminated
Figs. 4 and 7 from version 1, for brevity, and added Refs. 18, 29, 30, 31
together with associated discussio
Synergism of Saccharum Officinarum, Nicotiana Tobaccum and Ananas Comusus Extract Additives on the morphological structure and Quality of Electroplated Zinc on Mild Steel
Synergism of the combined Saccharum Officinarum (sugar cane), Nicotiana Tobaccum (tobacco) and Ananas Comusus (pine apple) extract additives on the surface morphology and quality of electroplated zinc on mild steel in acid chloride solution was investigated at ambient temperature (~28oC). The experiments were performed at different plating time (15 and 18 min), additive concentrations (2, 2.5, 3 ml/50ml of acid chloride solution), pH5, temperature (27-30oC), current (0.08A) and voltage (13 V DC) conditions. Zinc electroplating on mild steel was performed using a DC – supply. Examination of the steel plated surface was performed with scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for surface elemental composition analysis. Different surface characteristics were obtained depending upon the concentration of the additive and the plating time. The corrosion resistance of the plated surface was determined by weight loss method. Surface morphology of the plated surface indicated a good electroplating that was better than either of the extracts alone. The electroplating process was sensitive to changes in additive concentration and plating time as any variation in the plating parameter produced a new and different surface crystal morphology
Free surface effect on dune morphology and evolution
Our aim in this paper is to illustrate the importance of free water surface effects and sediment transport mode in the morphological evolution of sand dunes to upper stage plane beds. We have analyzed a large number of bed form data, 414 experiments from flumes and field, showing significantly different evolution of dune height and length in shallow (high Froude numbers) and in deep flows (low Froude numbers). In shallow flows, dune heights are observed to grow only in bed load dominant transport regime and start to decay for Suspension numbers greater than 1. Dunes in this case are not observed for Suspension number greater than 2.5. For low Froude numbers, dune heights continue to grow from bed load to suspended load dominant transport regime. Dunes in this case are not observed for Suspension number greater than 5. Furthermore, dunes in shallow flows reach significantly greater heights compared to dune heights in deep flows and dune lengths are generally larger in shallow flows
Morphing surfaces for the control of boundary layer transition
A structure configured to modify its surface morphology between a smooth state and a rough state in response to an applied stress. In demonstrated examples, a soft (PDMS) substrate is produced, and is pre-strained. A relatively stiff overlayer of a metal, such as chromium and gold, is applied to the substrate. When the pre-strained substrate is allowed to relax, the free surface of the stiff overlayer is forced to become distorted, yielding a free surface having a roughness of less than 1 millimeter. Repeated application and removal of the applied stress has been shown to yield reproducible changes in the morphology of the free surface. An application of such morphing free surface is to control a boundary layer transition of an aerodynamic fluid flowing over the surface
Nonlinear evolution of surface morphology in InAs/AlAs superlattices via surface diffusion
Continuum simulations of self-organized lateral compositional modulation
growth in InAs/AlAs short-period superlattices on InP substrate are presented.
Results of the simulations correspond quantitatively to the results of
synchrotron x-ray diffraction experiments. The time evolution of the
compositional modulation during epitaxial growth can be explained only
including a nonlinear dependence of the elastic energy of the growing epitaxial
layer on its thickness. From the fit of the experimental data to the growth
simulations we have determined the parameters of this nonlinear dependence. It
was found that the modulation amplitude don't depend on the values of the
surface diffusion constants of particular elements.Comment: 4 pages, 3 figures, published in Phys. Rev. Lett.
http://link.aps.org/abstract/PRL/v96/e13610
Morphology and Properties of Zn-Al-TiO2 Composite on Mild Steel
The influence of TiO2 composite and dispersed pure Al particle on zinc alloy electrodeposited on mild
steel was studied from chloride bath solution.Microstructural and mechanical properties of the alloy were
investigated. The structure, surface morphology, and surface topography of the deposited alloys were
characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM).In addition,
hardness of the coated alloys was measured. It was found that the obtained Zn-Al-TiO2 alloyexhibited
more preferred surface morphology and mechanical strength compared tothe substrate. The result shows
the existence of interaction between TiO2 compounds and zinc alloy particulate. It also exhibited well
bright dominate zinc coating on steel surface
- …