378,983 research outputs found

    LifelongΞ±-tocopherol supplementation increases the median life span of C57BL/6 mice in the cold but has only minor effects on oxidative damage

    Get PDF
    The effects of dietary antioxidant supplementation on oxidative stress and life span are confused. We maintained C57BL/6 mice at 7 Β± 2Β°C and supplemented their diet with Ξ±-tocopherol from 4 months of age. Supplementation significantly increased (p = 0.042) median life span by 15% (785 days, n = 44) relative to unsupplemented controls (682 days, n = 43) and also increased maximum life span (oldest 10%, p = 0.028). No sex or sex by treatment interaction effects were observed on life span, with treatment having no effect on resting or daily metabolic rate. Lymphocyte and hepatocyte oxidative DNA damage and hepatic lipid peroxidation were unaffected by supplementation, but hepatic oxidative DNA damage increased with age. Using a cDNA macroarray, genes associated with xenobiotic metabolism were significantly upregulated in the livers of female mice at 6 months of age (2 months supplementation). At 22 months of age (18 months supplementation) this response had largely abated, but various genes linked to the p21 signaling pathway were upregulated at this time. We suggest that Ξ±-tocopherol may initially be metabolized as a xenobiotic, potentially explaining why previous studies observe a life span extension generally when lifelong supplementation is initiated early in life. The absence of any significant effect on oxidative damage suggests that the life span extension observed was not mediated via any antioxidant properties of Ξ±-tocopherol. We propose that the life span extension observed following Ξ±-tocopherol supplementation may be mediated via upregulation of cytochrome p450 genes after 2 months of supplementation and/or upregulation of p21 signaling genes after 18 months of supplementation. However, these signaling pathways now require further investigation to establish their exact role in life span extension following Ξ±-tocopherol supplementation

    Effect of Preventive Supplementation with Zinc and other Micronutrients on Non-Malarial Morbidity in Tanzanian Pre-School Children: A Randomized Trial.

    Get PDF
    The efficacy of preventive zinc supplementation against diarrhea and respiratory illness may depend on simultaneous supplementation with other micronutrients. We aimed to assess the effect of supplementation with zinc and multiple micronutrients on diarrhea and other causes of non-malarial morbidity. Rural Tanzanian children (nβ€Š=β€Š612) aged 6-60 months and with height-for-age z-score < -1.5 SD were randomized to daily supplementation with zinc (10 mg) alone, multi-nutrients without zinc, multi-nutrients with zinc, or placebo. Children were followed for an average of 45 weeks. During follow-up, we recorded morbidity episodes. We found no evidence that concurrent supplementation with multi-nutrients influenced the magnitude of the effect of zinc on rates of diarrhea, respiratory illness, fever without localizing signs, or other illness (guardian-reported illness with symptoms involving skin, ears, eyes and abscesses, but excluding trauma or burns). Zinc supplementation reduced the hazard rate of diarrhea by 24% (4%-40%). By contrast, multi-nutrients seemed to increase this rate (HR; 95% CI: 1.19; 0.94-1.50), particularly in children with asymptomatic Giardia infection at baseline (2.03; 1.24-3.32). Zinc also protected against episodes of fever without localizing signs (0.75; 0.57-0.96), but we found no evidence that it reduced the overall number of clinic visits. We found no evidence that the efficacy of zinc supplements in reducing diarrhea rates is enhanced by concurrent supplementation with other micronutrients. By reducing rates of fever without localizing signs, supplementation with zinc may reduce inappropriate drug use with anti-malarial medications and antibiotics. ClinicalTrials.gov NCT00623857

    Supplementation of Mangosteen Pericarp Meal and Vitamin E on Egg Quality and Blood Profile of Laying Hens

    Full text link
    This research aimed to study the supplementation effects of mangosteen pericarp meal (MPM) and vitamin E (VE) in the diets on the egg quality and blood profile of laying hens. This research used 160 laying hens of Lohman strains 24 weeks of age. The observation was conducted for 11 weeks. A completely randomized design with four treatments and four replications (10 birds each) was used in this experiment. The treatments consisted of R0 (control diet), R1 (R0 + 1 g MPM/kg ration), R2 (R0 + 2 g MPM/kg ration) and R3 (R0 + 200 mg VE/kg ration). Variables measured were egg quality, yolk cholesterol, and blood profiles. The data were analyzed by using analysis of variance (ANOVA) and any significant difference between the treatment means were further tested by Duncan's Multiple Range Test. The results showed that supplementation of 1 g MPM/kg ration in the diet significantly (P&lt;0.05) decreased blood triglycerides compared with the control, laying hens fed with diet suplemented with of 2 g MPM/kg ration, and laying hens with diet suplemented with 200 mg VE/kg ration. Supplementation of MPM and VE did not affect (P&gt;0.05) egg quality (except shell thickness), blood cholesterol, and HDL, respectively. In conclusion, supplementation of 1 g MPM/kg in the diet of laying hens could decrease blood triglycerides

    Egg Production and Quality of Quails Fed Diets with Varying Levels of Methionine and Choline Chloride

    Full text link
    The aim of the present study was to determine the effect of choline chloride supplementation at 1500 ppm in diets containing various levels of methionine on egg production and egg quality in quails. A total of 180 birds, at 6 week-old quail were divided into 18 experimental units, and assigned to a 2 x 3 factorial design experiment with 3 replications (10 birds each) in each treatment. The birds were offered diets containing choline chloride at either 0 (A1) or 1500 ppm (A2), with three levels of methionine namely, low (0.19%, B1), standard (0.79%, B2) and, high (1.05%, B3). The feeding trial lasted for 8 weeks. Supplementation of choline chloride in low methionine diet significantly (P&lt;0.05) increased egg production, egg mass, and egg weight as compared to those without choline chloride supplementation. Supplementation of choline chloride significantly (P&lt;0.05) increased egg yolk weight but decreased albumen and egg shell weight as compared to those fed diets without choline chloride supplementation. It can be concluded that supplementation of choline chloride to a diet containing low methionine increased egg production, without affecting egg quality

    Reducing wasting in young children with preventive supplementation: a cohort study in Niger

    Get PDF
    OBJECTIVE: To compare the incidence of wasting, stunting, and mortality among children aged 6 to 36 months who are receiving preventive supplementation with either ready-to-use supplementary foods (RUSFs) or ready-to-use therapeutic foods (RUTFs). SUBJECTS AND METHODS: Children aged 6 to 36 months in 12 villages of Maradi, Niger, (n = 1645) received a monthly distribution of RUSFs (247 kcal [3 spoons] per day) for 6 months or RUTFs (500-kcal sachet per day) for 4 months. We compared the incidence of wasting, stunting, and mortality among children who received preventive supplementation with RUSFs versus RUTFs. RESULTS: The effectiveness of RUSF supplementation depended on receipt of a previous preventive intervention. In villages in which a preventive supplementation program was previously implemented, the RUSF strategy was associated with a 46% (95% confidence interval [CI]: 6%-69%) and 59% (95% CI: 17%-80%) reduction in wasting and severe wasting, respectively. In contrast, in villages in which the previous intervention was not implemented, we found no difference in the incidence of wasting or severe wasting according to type of supplementation. Compared with the RUTF strategy, the RUSF strategy was associated with a 19% (95% CI: 0%-34%) reduction in stunting overall. CONCLUSION: We found that the relative performance of a 6-month RUSF supplementation strategy versus a 4-month RUTF strategy varied with receipt of a previous nutritional intervention. Contextual factors will continue to be important in determining the dose and duration of supplementation that will be most effective, acceptable, and sustainable for a given setting

    Parenteral glutamine in critical illness : just what the gut needs

    Get PDF
    The role of glutamine as a metabolic fuel for the starving intestines, its capacity to limit bacterial translocation, lung sepsis and a pro-inflammatory cytokine response are reviewed in the context of uncertainities regarding current recommendations for glutamine supplementation in parenterally-fed critically ill patients. Weaknesses in the evidence-base showing benefit of intravenous glutamine supplementation are discussed together with aspects of glutamine supplementation via the enteral route.peer-reviewe

    Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study

    Get PDF
    Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists

    Improved Working Memory but No Effect on Striatal Vesicular Monoamine Transporter Type 2 after Omega-3 Polyunsaturated Fatty Acid Supplementation

    Get PDF
    Studies in rodents indicate that diets deficient in omega-3 polyunsaturated fatty acids (n-3 PUFA) lower dopamine neurotransmission as measured by striatal vesicular monoamine transporter type 2 (VMAT2) density and amphetamine-induced dopamine release. This suggests that dietary supplementation with fish oil might increase VMAT2 availability, enhance dopamine storage and release, and improve dopamine-dependent cognitive functions such as working memory. To investigate this mechanism in humans, positron emission tomography (PET) was used to measure VMAT2 availability pre- and post-supplementation of n-3 PUFA in healthy individuals. Healthy young adult subjects were scanned with PET using [11C]-(+)-Ξ±-dihydrotetrabenzine (DTBZ) before and after six months of n-3 PUFA supplementation (Lovaza, 2 g/day containing docosahexaenonic acid, DHA 750 mg/d and eicosapentaenoic acid, EPA 930 mg/d). In addition, subjects underwent a working memory task (n-back) and red blood cell membrane (RBC) fatty acid composition analysis pre- and post-supplementation. RBC analysis showed a significant increase in both DHA and EPA post-supplementation. In contrast, no significant change in [11C]DTBZ binding potential (BPND) in striatum and its subdivisions were observed after supplementation with n-3 PUFA. No correlation was evident between n-3 PUFA induced change in RBC DHA or EPA levels and change in [11C]DTBZ BPND in striatal subdivisions. However, pre-supplementation RBC DHA levels was predictive of baseline performance (i.e., adjusted hit rate, AHR on 3-back) on the n-back task (y = 0.19+0.07, r2 = 0.55, p = 0.009). In addition, subjects AHR performance improved on 3-back post-supplementation (pre 0.65Β±0.27, post 0.80Β±0.15, p = 0.04). The correlation between n-back performance, and DHA levels are consistent with reports in which higher DHA levels is related to improved cognitive performance. However, the lack of change in [11C]DBTZ BPND indicates that striatal VMAT2 regulation is not the mechanism of action by which n-3 PUFA improves cognitive performance. Β© 2012 Narendran et al
    • …
    corecore