573,433 research outputs found
Supervised Dictionary Learning
It is now well established that sparse signal models are well suited to
restoration tasks and can effectively be learned from audio, image, and video
data. Recent research has been aimed at learning discriminative sparse models
instead of purely reconstructive ones. This paper proposes a new step in that
direction, with a novel sparse representation for signals belonging to
different classes in terms of a shared dictionary and multiple class-decision
functions. The linear variant of the proposed model admits a simple
probabilistic interpretation, while its most general variant admits an
interpretation in terms of kernels. An optimization framework for learning all
the components of the proposed model is presented, along with experimental
results on standard handwritten digit and texture classification tasks
- …