11,359 research outputs found

    Trends in Atomic Adsorption on Titanium Carbide and Nitride

    Full text link
    Extensive density-functional calculations on atomic chemisorption of H, B, C, N, O, F, Al, Si, P, S, and Cl on the polar TiC(111) and TiN(111) yield similar adsorption trends for the two surfaces: (i) pyramid-like adsorption-energy trends along the adatom periods; (ii) strongest adsorption for O, C, N, S, and F; (iii) large adsorption variety; (iv) record-high adsorption energy for O (8.4-8.8 eV). However, a stronger adsorption on TiN is found for elements on the left of the periodic table and on TiC for elements on the right. The results support that a concerted-coupling model, proposed for chemisorption on TiC, applies also to TiN.Comment: 5 pages, 4 figures, 2 tables, conference proceeding presented at ECOSS-23 (Berlin, 2005), submitted to Surf. Sci. (2005

    Polyelectrolytes Adsorption: Chemical and Electrostatic Interactions

    Full text link
    Mean-field theory is used to model polyelectrolyte adsorption and the possibility of overcompensation of charged surfaces. For charged surfaces that are also chemically attractive, the overcharging is large in high salt conditions, amounting to 20-40% of the bare surface charge. However, full charge inversion is not obtained in thermodynamical equilibrium for physical values of the parameters. The overcharging increases with addition of salt, but does not have a simple scaling form with the bare surface charge. Our results indicate that more evolved explanation is needed in order to understand polyelectrolyte multilayer built-up. For strong polymer-repulsive surfaces, we derive simple scaling laws for the polyelectrolyte adsorption and overcharging. We show that the overcharging scales linearly with the bare surface charge, but its magnitude is very small in comparison to the surface charge. In contrast with the attractive surface, here the overcharging is found to decrease substantially with addition of salt. In the intermediate range of weak repulsive surfaces, the behavior with addition of salt crosses over from increasing overcharging (at low ionic strength) to decreasing one (at high ionic strength). Our results for all types of surfaces are supported by full numerical solutions of the mean-field equations.Comment: 17 pages, 7 figures, final version. to be published in PR

    First-principles approach to rotational-vibrational frequencies and infrared intensity for H2_2 adsorbed in nanoporous materials

    Full text link
    The absorption sites and the low-lying rotational and vibrational (RV) energy states for H2_2 adsorbed within a metal-organic framework are calculated via van der Waals density functional theory. The induced dipole due to bond stretching is found to be accurately given by a first-principles driven approximation using maximally-localized-Wannier-function analysis. The strengths and positions of lines in the complex spectra of RV transitions are in reasonable agreement with experiment, and in particular explain the experimentally mysteriously missing primary line for para hydrogen

    Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: A trend study of surface electronic factors

    Full text link
    This study explores atomic and molecular adsorption on a number of early transition-metal carbides (TMC's) by means of density-functional theory calculations. Trend studies are conducted with respect to both period and group in the periodic table, choosing the substrates ScC, TiC, VC, ZrC, NbC, delta-MoC, TaC, and WC and the adsorbates H, B, C, N, O, F, NH, NH2, and NH3. Trends in adsorption strength are explained in terms of surface electronic factors, by correlating the calculated adsorption energy values with the calculated surface electronic structures. The results are rationalized with use of a concerted-coupling model (CCM), which has previously been applied succesfully to the description of adsorption on TiC(111) and TiN(111) surfaces [Solid State Commun. 141, 48 (2007)]. First, the clean TMC(111) surfaces are characterized by calculating surface energies, surface relaxations, Bader charges, and surface-localized densities of states (DOS's). Detailed comparisons between surface and bulk DOS's reveal the existence of transition-metal localized SR's (TMSR's) in the pseudogap and of several C-localized SR's (CSR's) in the upper valence band on all considered TMC(111) surfaces. Then, atomic and molecular adsorption energies, geometries, and charge transfers are presented. An analysis of the adsorbate-induced changes in surface DOS's reveals a presence of both adsorbate--TMSR and adsorbate--CSR's interactions, of varying strengths depending on the surface and the adsorbate. These variations are correlated to the variations in adsorption energies. The results are used to generalize the content and applications of the previously proposed CCM to this larger class of substrates and adsorbates. Implications for other classes of materials, for catalysis, and for other surface processes are discussed

    Gas phase atomic metals in the circumstellar envelope of IRC+10216

    Full text link
    We report the results of a search for gas phase atomic metals in the circumstellar envelope of the AGB carbon star IRC+10216. The search was made using high resolution (R=50000) optical absorption spectroscopy of a backgound star that probes the envelope on a line of sight 35" from the center. The metal species that we detect in the envelope include NaI, KI, CaI, CaII, CrI, and FeI, with upper limits for AlI, MnI, TiI, TiII, and SrII. The observations are used to determine the metal abundances in the gas phase and the condensation onto grains. The metal depletions range from a factor of 5 for Na to 300 for Ca, with some similarity to the depletion pattern in interstellar clouds. Our results directly constrain the condensation efficiency of metals in a carbon-rich circumstellar envelope and the mix of solid and gas phase metals returned by the star to the ISM. The abundances of the uncondensed metal atoms that we observe are typically larger than the abundances of the metal-bearing molecules detected in the envelope. The metal atoms are therefore the major metal species in the gas phase and likely play a key role in the metal chemistry.Comment: 11 pages, 8 Figures. Accepted by Astronomy and Astrophysic

    Energetics and dynamics of H2_2 adsorbed in a nanoporous material at low temperature

    Full text link
    Molecular hydrogen adsorption in a nanoporous metal organic framework structure (MOF-74) was studied via van der Waals density-functional calculations. The primary and secondary binding sites for H2_2 were confirmed. The low-lying rotational and translational energy levels were calculated, based on the orientation and position dependent potential energy surface at the two binding sites. A consistent picture is obtained between the calculated rotational-translational transitions for different H2_2 loadings and those measured by inelastic neutron scattering exciting the singlet to triplet (para to ortho) transition in H2_2. The H2_2 binding energy after zero point energy correction due to the rotational and translational motions is predicted to be ∼\sim100 meV in good agreement with the experimental value of ∼\sim90 meV.Comment: 5 pagers, 4 figures. added reference
    • …
    corecore