184,306 research outputs found

    Quantum entanglement in strong-field ionization

    Get PDF
    We investigate the time-evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion-core. Since the standard procedure is numerically prohibitive in this case, we propose a novel way to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime

    Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization

    Full text link
    Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schr\"odinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field

    Momentum Analysis in Strong-field Double Ionization

    Full text link
    We provide a basis for the laser intensity dependence of the momentum distributions of electrons and ions arising from strong-field non-sequential double ionization (NSDI) at intensities in the range I=1−6.5×1014W/cm2I=1-6.5 \times 10^{14} W/cm^2. To do this we use a completely classical method introduced previously \cite{ho-etal05}. Our calculated results reproduce the features of experimental observations at different laser intensities and depend on just two distinct categories of electon trajectories.Comment: 5 pages, 7 figure

    Lithium Ionization by a Strong Laser Field

    Full text link
    We study ab initio computations of the interaction of Lithium with a strong laser field. Numerical solutions of the time-dependent fully-correlated three-particle Schroedinger equation restricted to the one-dimensional soft-core approximation are presented. Our results show a clear transition from non-sequential to sequential double ionization for increasing intensities. Non sequential double ionization is found to be sensitive to the spin configuration of the ionized pair. This asymmetry, also found in experiments of photoionization of Li with synchrotron radiation, shows the evidence of the influence of the exclusion principle in the underlying rescattering mechanism

    One-Electron Ionization of Multielectron Systems in Strong Nonresonant Laser Fields

    Full text link
    We present a novel approach to calculating strong field ionization dynamics of multielectron molecular targets. Adopting a multielectron wavefunction ansatz based on field-free ab initio neutral and ionic multielectron states, a set of coupled time-dependent single-particle Schroedinger equations describing the neutral amplitude and continuum electron are constructed. These equations, amenable to direct numerical solution or further analytical treatment, allow one to study multielectron effects during strong field ionization, recollision, and high harmonic generation. We apply the method to strong field ionization of CO_2, and suggest the importance of intermediate core excitation to explain previous failure of analytical models to reproduce experimental ionization yields for this molecule.Comment: 25 pages, 6 figure
    • …
    corecore