83,123 research outputs found

    Cryogenic storage system Patent

    Get PDF
    Cryogenic storage system for gases onboard spacecraf

    GPUs as Storage System Accelerators

    Full text link
    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detection between successive versions of the same file and as a traditional system that uses hashing to preserve data integrity. Further, we evaluate the impact of offloading to the GPU on competing applications' performance. Our results show that this technique can bring tangible performance gains without negatively impacting the performance of concurrently running applications.Comment: IEEE Transactions on Parallel and Distributed Systems, 201

    Superflywheel energy storage system

    Get PDF
    A windpowered system using the superflywheel configuration for energy storage is considered. Basic elements of superflywheels are thin rods assembled in pregrooved hub lamina so that they fan out in radial orientation. Adjacent layers of hub lamina are assembled 90 degree in rotation to each other so as to form a circular brush configuration. Thus stress concentrations and rod failure are minimized and realistic failure containment for a high performance flywheel is obtained

    Improved metrics collection and correlation for the CERN cloud storage test framework

    Get PDF
    Storage space is one of the most important ingredients that the European Organization for Nuclear Research (CERN) needs for its experiments and operation. Part of the Data & Storage Services (IT-DSS) group’s work at CERN is focused on testing and evaluating the cloud storage system that is provided by the openlab partner Huawei, Huawei Universal Disk Storage System (UDS). As a whole, the system consists of both software and hardware. The objective of the Huawei-CERN partnership is to investigate the performance of the cloud storage system. Among the interesting questions are the system’s scalability, reliability and ability to store and retrieve files. During the tests, possible bugs and malfunctions can be discovered and corrected. Different versions of the storage software that runs inside the storage system can also be compared to each other. The nature of testing and benchmarking a storage system gives rise to several small tasks that can be done during a short summer internship. In order to test the storage system a test framework developed by the DSS group is used. The framework consists of various types of file transfer tests, client and server monitoring programs and log file analysis programs. Part of the work done was additions to the existing framework and part was developing new tools. Metrics collection was the central theme. Metrics are to be understood as system statistics, such as memory consumption or processor usage. Memory usage and disk reads/writes were added to the existing client real-time monitoring framework. CPU and memory usage, network traffic (bytes received/sent) and the number of processes running are collected from a client computer before and after a daily test. Two other additions are visualization for storage system log files, as well as a new monitoring tool for the storage system. This report is divided into parts describing each part of the framework that was improved or added, the problem and the final solution. A short description of the code and the architecture are also included

    Combined solar collector and energy storage system

    Get PDF
    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation

    Effect of bird age and storage system on physical properties of eggs from brown laying hens

    Get PDF
    A total of 108 eggs from a group of 100 brown laying hens housed in standard cages were analyzed. Thirty-six eggs were retired when the hens had 30 week of age, other 36 eggs were retired when the hens had 35 week of age and the remaining 36 eggs were retired five weeks afterwards. Each group of 36 eggs was radomly divided in three groups of 12 eggs. First group was analyzed at once, second group one was kept during one week in the refrigerator (5°C) and third group was kept also one week but on ambient temperature (25°C). Shell color, shell thickness, specific gravity, albumen height and Haugh units wre obtained. The bird age had significant effect on shell color and shell thickness, but the storage system had not influence on such variables. The hen age had not effect on specific gravity, but the storage system affected to this variable. Hen age and storage system had significant influence (P<0.05) on albumen height and Haugh units, and the interaction age × storage system was significant for these variables. The specific gravity had positive relations with shell thickness, yolk color, albumen height and Haugh units. It is concluded that bird age and storage system under high temperatures reduced the egg quality

    High-Temperature Thermal Storage System for Solar Tower Power Plants with Open-Volumetric Air Receiver Simulation and Energy Balancing of a Discretized Model

    Get PDF
    This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants
    • …
    corecore