97,786 research outputs found
Recommended from our members
Non-stoichiometric oxide and metal interfaces and reactions
We have employed a combination of experimental surface science techniques and density functional calculations to study the reduction of TiO2(110) surfaces through the doping with submonolayer transition metals. We concentrate on the role of Ti adatoms in self doping of rutile and contrast the behaviour to that of Cr. DFT+U calculations enable identification of probable adsorption structures and their spectroscopic characteristics. Adsorption of both metals leads to a broken symmetry and an asymmetric charge transfer localised around the defect site of a mixed localised/delocalised character. Charge transfer creates defect states with Ti 3d character in the band gap at similar to 1-eV binding energy. Cr adsorption, however, leads to a very large shift in the valence-band edge to higher binding energy and the creation of Cr 3d states at 2.8-eV binding energy. Low-temperature oxidation lifts the Ti-derived band-gap states and modifies the intensity of the Cr features, indicative of a change of oxidation state from Cr3+ to Cr4+. Higher temperature processing leads to a loss of Cr from the surface region, indicative of its substitution into the bulk
Conditions for duality between fluxes and concentrations in biochemical networks
Mathematical and computational modelling of biochemical networks is often
done in terms of either the concentrations of molecular species or the fluxes
of biochemical reactions. When is mathematical modelling from either
perspective equivalent to the other? Mathematical duality translates concepts,
theorems or mathematical structures into other concepts, theorems or
structures, in a one-to-one manner. We present a novel stoichiometric condition
that is necessary and sufficient for duality between unidirectional fluxes and
concentrations. Our numerical experiments, with computational models derived
from a range of genome-scale biochemical networks, suggest that this
flux-concentration duality is a pervasive property of biochemical networks. We
also provide a combinatorial characterisation that is sufficient to ensure
flux-concentration duality. That is, for every two disjoint sets of molecular
species, there is at least one reaction complex that involves species from only
one of the two sets. When unidirectional fluxes and molecular species
concentrations are dual vectors, this implies that the behaviour of the
corresponding biochemical network can be described entirely in terms of either
concentrations or unidirectional fluxes
Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration
Living systems are forced away from thermodynamic equilibrium by exchange of
mass and energy with their environment. In order to model a biochemical
reaction network in a non-equilibrium state one requires a mathematical
formulation to mimic this forcing. We provide a general formulation to force an
arbitrary large kinetic model in a manner that is still consistent with the
existence of a non-equilibrium steady state. We can guarantee the existence of
a non-equilibrium steady state assuming only two conditions; that every
reaction is mass balanced and that continuous kinetic reaction rate laws never
lead to a negative molecule concentration. These conditions can be verified in
polynomial time and are flexible enough to permit one to force a system away
from equilibrium. In an expository biochemical example we show how a
reversible, mass balanced perpetual reaction, with thermodynamically infeasible
kinetic parameters, can be used to perpetually force a kinetic model of
anaerobic glycolysis in a manner consistent with the existence of a steady
state. Easily testable existence conditions are foundational for efforts to
reliably compute non-equilibrium steady states in genome-scale biochemical
kinetic models.Comment: 11 pages, 2 figures (v2 is now placed in proper context of the
excellent 1962 paper by James Wei entitled "Axiomatic treatment of chemical
reaction systems". In addition, section 4, on "Utility of steady state
existence theorem" has been expanded.
Modeling and Optimization of Lactic Acid Synthesis by the Alkaline Degradation of Fructose in a Batch Reactor
The present work deals with the determination of the optimal operating conditions of lactic acid synthesis by the alkaline degradation of fructose. It is a complex transformation for which detailed knowledge is not available. It is carried out in a batch
or semi-batch reactor. The ‘‘Tendency Modeling’’ approach, which consists of the development of an approximate stoichiometric and kinetic model, has been used.
An experimental planning method has been utilized as the database for model development.
The application of the experimental planning methodology allows comparison between the experimental and model response. The model is then used in an optimization procedure to compute the optimal process. The optimal control problem is converted into a nonlinear programming problem solved using the sequencial quadratic programming procedure coupled with the golden search method. The strategy developed allows simultaneously optimizing the different variables, which may be constrained. The validity of the methodology is illustrated by the determination
of the optimal operating conditions of lactic acid production
A survey of methods for deciding whether a reaction network is multistationary
Which reaction networks, when taken with mass-action kinetics, have the
capacity for multiple steady states? There is no complete answer to this
question, but over the last 40 years various criteria have been developed that
can answer this question in certain cases. This work surveys these
developments, with an emphasis on recent results that connect the capacity for
multistationarity of one network to that of another. In this latter setting, we
consider a network that is embedded in a larger network , which means
that is obtained from by removing some subsets of chemical species and
reactions. This embedding relation is a significant generalization of the
subnetwork relation. For arbitrary networks, it is not true that if is
embedded in , then the steady states of lift to . Nonetheless, this
does hold for certain classes of networks; one such class is that of fully open
networks. This motivates the search for embedding-minimal multistationary
networks: those networks which admit multiple steady states but no proper,
embedded networks admit multiple steady states. We present results about such
minimal networks, including several new constructions of infinite families of
these networks
Imido–hydrido complexes of Mo(IV): catalysis and mechanistic aspects of hydroboration reactions
Imido–hydrido complexes (ArN)Mo(H)(Cl)(PMe3)3 (1) and (ArN)Mo(H)2(PMe3)3 (2) (Ar = 2,6-diisopropylphenyl)
catalyse a variety of hydroboration reactions, including the rare examples of addition of HBCat to
nitriles to form bis(borylated) amines RCH2N(BCat)2. Stoichiometric reactivity of complexes 1 and 2 with
nitriles and HBCat suggest that catalytic reactions proceed via a series of agostic borylamido and borylamino
complexes. For complex 1, catalysis starts with addition of nitriles across the Mo–H bond to give
(ArN)Mo(Cl)(NvCHR)(PMe3)2; whereas for complex 2 stoichiometric reactions suggest initial addition of
HBCat to form the agostic complex Mo(H)2(PMe3)3(η3-NAr-HBcat
- …