37,803 research outputs found
Determination of the orbital moment and crystal field splitting in LaTiO
Utilizing a sum-rule in a spin-resolved photoelectron spectroscopic
experiment with circularly polarized light, we show that the orbital moment in
LaTiO is strongly reduced both below and above the N\'{e}el temperature.
Using Ti x-ray absorption spectroscopy as a local probe, we found
that the crystal field splitting in the subshell is about 0.12-0.30
eV. This large splitting does not facilitate the formation of an orbital
liquid
Crystal-field splitting for low symmetry systems in ab initio calculations
In the framework of the LDA+U approximation we propose the direct way of
calculation of crystal-field excitation energy and apply it to La and Y
titanates. The method developed can be useful for comparison with the results
of spectroscopic measurements because it takes into account fast relaxations of
electronic system. For titanates these relaxation processes reduce the value of
crystal-field splitting by as compared with the difference of LDA one
electron energies. However, the crystal-field excitation energy in these
systems is still large enough to make an orbital liquid formation rather
unlikely and experimentally observed isotropic magnetism remains unexplained.Comment: 13 pages, 5 figures, 3 table
Origin and spectroscopic determination of trigonal anisotropy in a heteronuclear single-molecule magnet
W-band ({\nu} ca. 94 GHz) electron paramagnetic resonance (EPR) spectroscopy
was used for a single-crystal study of a star-shaped Fe3Cr single-molecule
magnet (SMM) with crystallographically imposed trigonal symmetry. The high
resolution and sensitivity accessible with W-band EPR allowed us to determine
accurately the axial zero-field splitting terms for the ground (S =6) and first
two excited states (S =5 and S =4). Furthermore, spectra recorded by applying
the magnetic field perpendicular to the trigonal axis showed a pi/6 angular
modulation. This behavior is a signature of the presence of trigonal transverse
magnetic anisotropy terms whose values had not been spectroscopically
determined in any SMM prior to this work. Such in-plane anisotropy could only
be justified by dropping the so-called 'giant spin approach' and by considering
a complete multispin approach. From a detailed analysis of experimental data
with the two models, it emerged that the observed trigonal anisotropy directly
reflects the structural features of the cluster, i.e., the relative orientation
of single-ion anisotropy tensors and the angular modulation of single-ion
anisotropy components in the hard plane of the cluster. Finally, since
high-order transverse anisotropy is pivotal in determining the spin dynamics in
the quantum tunneling regime, we have compared the angular dependence of the
tunnel splitting predicted by the two models upon application of a transverse
field (Berry-phase interference).Comment: 13 pages, 9 figure
Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals.
Much of the electronic transport, photophysical, or biological functions of molecular materials emerge from intermolecular interactions and associated nanoscale structure and morphology. However, competing phases, defects, and disorder give rise to confinement and many-body localization of the associated wavefunction, disturbing the performance of the material. Here, we employ vibrational excitons as a sensitive local probe of intermolecular coupling in hyperspectral infrared scattering scanning near-field optical microscopy (IR s-SNOM) with complementary small-angle X-ray scattering to map multiscale structure from molecular coupling to long-range order. In the model organic electronic material octaethyl porphyrin ruthenium(II) carbonyl (RuOEP), we observe the evolution of competing ordered and disordered phases, in nucleation, growth, and ripening of porphyrin nanocrystals. From measurement of vibrational exciton delocalization, we identify coexistence of ordered and disordered phases in RuOEP that extend down to the molecular scale. Even when reaching a high degree of macroscopic crystallinity, identify significant local disorder with correlation lengths of only a few nanometers. This minimally invasive approach of vibrational exciton nanospectroscopy and -imaging is generally applicable to provide the molecular-level insight into photoresponse and energy transport in organic photovoltaics, electronics, or proteins
Ordered low-temperature structure in K4C60 detected by infrared spectroscopy
Infrared spectra of a K4C60 single-phase thin film have been measured between
room temperature and 20 K. At low temperatures, the two high-frequency T1u
modes appear as triplets, indicating a static D2h crystal-field stabilized
Jahn-Teller distortion of the (C60)4- anions. The T1u(4) mode changes into the
known doublet above 250 K, a pattern which could have three origins: a dynamic
Jahn-Teller effect, static disorder between "staggered" anions, or a phase
transition from an orientationally-ordered phase to one where molecular motion
is significant.Comment: 4 pages, 2 figures submitted to Phys. Rev.
- …