120,339 research outputs found
Species competition: coexistence, exclusion and clustering
We present properties of Lotka-Volterra equations describing ecological
competition among a large number of competing species. First we extend to the
case of a non-homogeneous niche space stability conditions for solutions
representing species coexistence. Second, we discuss mechanisms leading to
species clustering and obtain an analytical solution for a lumped state in a
specific instance of the system. We also discuss how realistic ecological
interactions may result in different types of competition coefficients.Comment: 9 pages, 4 figures. Replaced with published version. Freely available
from the publisher site under the Creative Commons Attribution licens
Do epigeal termite mounds increase the diversity of plant habitats in a tropical rain forest in peninsular Malaysia?
The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation
Intransitivity and coexistence in four species cyclic games
Intransitivity is a property of connected, oriented graphs representing
species interactions that may drive their coexistence even in the presence of
competition, the standard example being the three species Rock-Paper-Scissors
game. We consider here a generalization with four species, the minimum number
of species allowing other interactions beyond the single loop (one predator,
one prey). We show that, contrary to the mean field prediction, on a square
lattice the model presents a transition, as the parameter setting the rate at
which one species invades another changes, from a coexistence to a state in
which one species gets extinct. Such a dependence on the invasion rates shows
that the interaction graph structure alone is not enough to predict the outcome
of such models. In addition, different invasion rates permit to tune the level
of transitiveness, indicating that for the coexistence of all species to
persist, there must be a minimum amount of intransitivity.Comment: Final, published versio
How self-regulation, the storage effect and their interaction contribute to coexistence in stochastic and seasonal environments
Explaining coexistence in species-rich communities of primary producers
remains a challenge for ecologists because of their likely competition for
shared resources. Following Hutchinson's seminal suggestion, many theoreticians
have tried to create diversity through a fluctuating environment, which impairs
or slows down competitive exclusion. However, fluctuating-environment models
often only produce a dozen of coexisting species at best. Here, we investigate
how to create richer communities in fluctuating environments, using an
empirically parameterized model. Building on the forced Lotka-Volterra model of
Scranton and Vasseur (Theor Ecol 9(3):353-363, 2016), inspired by phytoplankton
communities, we have investigated the effect of two coexistence mechanisms,
namely the storage effect and higher intra- than interspecific competition
strengths (i.e., strong self-regulation). We tuned the intra/inter competition
ratio based on empirical analyses, in which self-regulation dominates
interspecific interactions. Although a strong self-regulation maintained more
species (50%) than the storage effect (25%), we show that none of the two
coexistence mechanisms considered could ensure the coexistence of all species
alone. Realistic seasonal environments only aggravated that picture, as they
decreased persistence relative to a random environment. However, strong
self-regulation and the storage effect combined superadditively so that all
species could persist with both mechanisms at work. Our results suggest that
combining different coexistence mechanisms into community models might be more
fruitful than trying to find which mechanism best explains diversity. We
additionally highlight that while biomass-trait distributions provide some
clues regarding coexistence mechanisms, they cannot indicate unequivocally
which mechanisms are at play.Comment: 27 pages, 9 figures, Theor Ecol (2019
Global minimizers of coexistence for competing species
A class of variational models describing ecological systems of k species
competing for the same resources is investigated. The occurrence of coexistence
in minimal energy solutions is discussed and positive results are proven for
suitably differentiated internal dynamics
Self-organized patterns of coexistence out of a predator-prey cellular automaton
We present a stochastic approach to modeling the dynamics of coexistence of
prey and predator populations. It is assumed that the space of coexistence is
explicitly subdivided in a grid of cells. Each cell can be occupied by only one
individual of each species or can be empty. The system evolves in time
according to a probabilistic cellular automaton composed by a set of local
rules which describe interactions between species individuals and mimic the
process of birth, death and predation. By performing computational simulations,
we found that, depending on the values of the parameters of the model, the
following states can be reached: a prey absorbing state and active states of
two types. In one of them both species coexist in a stationary regime with
population densities constant in time. The other kind of active state is
characterized by local coupled time oscillations of prey and predator
populations. We focus on the self-organized structures arising from
spatio-temporal dynamics of the coexistence. We identify distinct spatial
patterns of prey and predators and verify that they are intimally connected to
the time coexistence behavior of the species. The occurrence of a prey
percolating cluster on the spatial patterns of the active states is also
examined.Comment: 19 pages, 11 figure
- âŠ