193,448 research outputs found
Entanglement entropy in fermionic Laughlin states
We present analytic and numerical calculations on the bipartite entanglement
entropy in fractional quantum Hall states of the fermionic Laughlin sequence.
The partitioning of the system is done both by dividing Landau level orbitals
and by grouping the fermions themselves. For the case of orbital partitioning,
our results can be related to spatial partitioning, enabling us to extract a
topological quantity (the `total quantum dimension') characterizing the
Laughlin states. For particle partitioning we prove a very close upper bound
for the entanglement entropy of a subset of the particles with the rest, and
provide an interpretation in terms of exclusion statistics.Comment: 4+ pages, 3 figures. Minor changes in v
Locality-Adaptive Parallel Hash Joins Using Hardware Transactional Memory
Previous work [1] has claimed that the best performing implementation of in-memory hash joins is based on (radix-)partitioning of the build-side input. Indeed, despite the overhead of partitioning, the benefits from increased cache-locality and synchronization free parallelism in the build-phase outweigh the costs when the input data is randomly ordered. However, many datasets already exhibit significant spatial locality (i.e., non-randomness) due to the way data items enter the database: through periodic ETL or trickle loaded in the form of transactions. In such cases, the first benefit of partitioning — increased locality — is largely irrelevant. In this paper, we demonstrate how hardware transactional memory (HTM) can render the other benefit, freedom from synchronization, irrelevant as well. Specifically, using careful analysis and engineering, we develop an adaptive hash join implementation that outperforms parallel radix-partitioned hash joins as well as sort-merge joins on data with high spatial locality. In addition, we show how, through lightweight (less than 1% overhead) runtime monitoring of the transaction abort rate, our implementation can detect inputs with low spatial locality and dynamically fall back to radix-partitioning of the build-side input. The result is a hash join implementation that is more than 3 times faster than the state-of-the-art on high-locality data and never more than 1% slower
MPI-Vector-IO: Parallel I/O and Partitioning for Geospatial Vector Data
In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO 1 , a parallel I/O library that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data types embedded within collective computation and communication using MPI message-passing library. These abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) application development on HPC platforms
- …