144,177 research outputs found
Expedited evolution of soil bacteria exposed to organic contaminants
We tested two hypotheses for which support can be found in the literature. (1) the degradation of organic contaminants is faster in humus soil than in mineral soil and (2) the degradation of organic contaminants is faster in previously contaminated soil than in similar but previously non-contaminated soil
Normal background concentrations (NBCs) of contaminants in English soils : final project report
The British Geological Survey (BGS) has been commissioned by the Department for Environment, Food and Rural Affairs (Defra) to give guidance on what are normal levels of contaminants in English soils in support of the Part 2A Contaminated Land Statutory Guidance. This has initially been done by studying the distribution of four contaminants – arsenic, lead, benzo[a]pyrene (BaP) and asbestos – in topsoils from England. This work was extended to a further four contaminants (cadmium, copper, nickel and mercury) which enabled methodologies developed to be tested on a larger range of contaminants. The first phase of the Project gathered data sets that were: nationally extensive; systematically collected so a broad range of land uses were represented; and collected and analysed to demonstrably and acceptable levels of quality. Information on the soil contaminant concentrations in urban areas was of particular importance as the normal background is considered to be a combination of both natural and diffuse anthropogenic contributions to the soil. Issues of soil quality are most important in areas where these affect most people, namely, the urban environment. The two principal data sets used in this work are the BGS Geochemical Baseline Survey of the Environment (G-BASE) rural and urban topsoils (37,269 samples) and the English NSI (National Soil Inventory) topsoils (4,864 samples) reanalysed at the BGS laboratories by X-ray fluorescence spectrometry (XRFS) so both data sets were highly compatible. These two data sets provide results for most inorganic element contaminants, though results explored for mercury and BaP are drawn from a variety of different and much less extensive data sets
Soil bed reactor work of the Environmental Research Lab. of the University of Arizona in support of the research and development of Biosphere 2
Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water
Developing site-specific guidelines for orchard soils based on bioaccessibility – Can it be done?
Horticultural land within the periurban fringe of NZ towns and cities increasingly is being developed for residential subdivision. Recent surveys have shown that concentrations of As, Cd, Cu, Pb, and ΣDDT (sum of DDT and its degradation products DDE and DDD) in such soils can exceed criteria protective of human health.¹ Soil ingestion is a key exposure pathway for non-volatile contaminants in soil. Currently in NZ, site-specific risk assessments and the derivation of soil guidelines protective of human health assume that all of the contaminant present in the soil is available for uptake and absorption by the human gastrointestinal tract. This assumption can overestimate health risks and has implications for the remediation of contaminated sites.² In comparison, the bioavailability of contaminants is considered when estimating exposure via dermal absorption and by ingestion of home-grown produce.³ Dermal absorption factors and plant uptake factors are included in the calculations for estimating exposures via these routes
Contamination
Soil contamination occurs when substances are added to soil, resulting in increases in concentrations
above background or reference levels. Pollution may follow from contamination when contaminants
are present in amounts that are detrimental to soil quality and become harmful to the environment or
human health. Contamination can occur via a range of pathways including direct application to land and
indirect application from atmospheric deposition.
Contamination was identified by SEPA (2001) as a significant threat to soil quality in many parts of
Scotland. Towers et al. (2006) identified four principal contamination threats to Scottish soils: acidification;
eutrophication; metals; and pesticides. The Scottish Soil Framework (Scottish Government, 2009) set out
the potential impact of these threats on the principal soil functions.
Severe contamination can lead to “contaminated land” [as defined under Part IIA of the Environmental
Protection Act (1990)]. This report does not consider the state and impacts of contaminated land on
the wider environment in detail. For further information on contaminated land, see ‘Dealing with Land
Contamination in Scotland’ (SEPA, 2009).
This chapter considers the causes of soil contamination and their environmental and socio-economic
impacts before going on to discuss the status of, and trends in, levels of contaminants in Scotland’s soils
Bioremediation of contaminated soil : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Environmental Engineering at Massey University
The release of contaminants into the environment is inevitable. Contaminants are released through manufacture and use of products and as a result of treatment and disposal of wastes. Upon release to the environment, contaminants move and respond to a number of interrelated natural and man made factors. Penta-chloro-phenol (PCP) is one such contaminant that has been released into the environment and is known to have serious long term environmental effects. The objective of this study was to determine the effectiveness of biological processes to remediate soil contaminated with Penta-chloro-phenol (PCP). This thesis reviews mechanisms by which soil is contaminated, processes available to remediate soils, and in particular, process requirements for successful bioremediation. The abilities of bacteria to degrade PCP from soil contaminated with PCP was evaluated. Solid phase and slurry phase experiments were examined for their effect on PCP concentration over a four month period at the Department of Technology. Massey University. The objectives of this study were (1) To determine if aeration and inoculation of soil in-situ could produce significant removal of PCP. (2) Determine the effect of concentration on bioremediation rates. (3) Compare in-situ treatment with bio-slurry treatments. The experiments showed that it is possible to remove up to 95% of PCP from contaminated soil by inoculation with bacteria. Inoculum size and aeration were shown to be critical factors in affecting the rate of degradation. The larger the initial inoculum the greater the rate of degradation. Without aeration the inoculum was unable to significantly degrade PCP. The bio-slurry confirmed that PCP could be removed readily from soil to an aqueous state. In an aqueous state PCP is degraded at a faster rate than when it is incorporated into the soil matrix. The results of this work is to show that soil rehabilitation by way of biodegradation is a feasible and attractive process
Solidification/stabilisation of soil contaminated with metal: a review
Solidification/stabilisation (S/S) is generically defined as a chemical and physical alteration technique of reducing the mobility as well as solubility of contaminants in wastes in order to convert them into chemically inert form. The technique is specifically developed to confine the movement of contaminants in wastes so that their concentrations in the surrounding environment (e.g. subsurface soil matrices and groundwater) will not exceed stipulated environmental regulatory levels. This technique necessitates application of cementitious materials such as cement which also provides a favorable solidification effect on the stabilised wastes so that the end product can be easily transported to disposal sites or reused as construction materials. This paper reviews the S/S technology as applied to contaminated soil treatment with emphasis on its chemical binder systems, mechanisms, interferences and post-treatment leaching tests. S/S is an important soil contamination remediation technology as evident by its simplicity, technical and cost-effectiveness
Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide
Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing
Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide
Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing
Spin labeling ESR investigation of the molecular environment of soil interacting with chemical organic contaminants
This manuscript elucidates the influence of special functional groups of organic xenobiotic chemicals on partly simultaneous molecular binding mechanisms. Organic xenobiotics are released as contaminants into the environment and are partially bound to soil constituents, such as humic substances (HS) and the mineral phase. The interaction of chemical contaminants with HS of soil was investigated using a labeling technique of soil samples with stable nitroxide radicals as model contaminants. These nitroxide radicals only differed in one functionality, a hydroxy or an amino functional group. Electron spin resonance (ESR) analyses of contaminated soil samples showed that the interaction was a multistage process that comprised an initial increase in the concentration of free organic radicals of soil influenced by contaminants with hydroxy or amino functionality, a decrease in the polarity of the molecular environment of soil, and a change in mobility of contaminant molecules. Towards the end of interaction, the concentration of free organic radicals usually decreased. Binding of contaminants to soil constituents via specific functionality was revealed detecting a change in their ESR spectra. Basing on the ESR analyses, a two-way exchange of protons' electron pairs between contaminants and HS was hypothesized to interpret the beginning of interaction. © 2013 Elsevier B.V
- …