22,821 research outputs found

    The Regulatory Role of MeAIB in Protein Metabolism and the mTOR Signaling Pathway in Porcine Enterocytes.

    Get PDF
    Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2), which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian target of rapamycin (mTOR) signaling pathway in porcine enterocytes. Intestinal porcine epithelial cells (IPEC)-J2 cells were cultured in a high-glucose Dulbecco's modified Eagle's (DMEM-H) medium with 0 or 5 mmoL/L System A amino acid analogue (MeAIB) for 48 h. Cells were collected for analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids, and the expression of key genes involved in the mTOR signaling pathway. The results showed that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino acid substrates but also of indispensable amino acids (methionine and leucine), and suppressed cell proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling, and provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine

    Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres

    Get PDF
    Background Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. Methods In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) and the soleus (a slow-twitch muscle) of adult mice of different ages (range 100–900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium-coupled neutral amino acid transporter (SNAT) 2, and the sodium-independent L-type amino-acid transporter (LAT) 2. Results At all ages investigated, protein synthesis was always higher in the slow-twitch than in the fast-twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast-twitch than in the slow-twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast-twitch than in the slow-twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. Conclusion From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age-dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT

    Functional characterization of a glutamate/aspartate transporter from the mosquito Aedes aegypti

    Get PDF
    Glutamate elicits a variety of effects in insects, including inhibitory and excitatory signals at both neuromuscular junctions and brain. Insect glutamatergic neurotransmission has been studied in great depth especially from the standpoint of the receptor-mediated effects, but the molecular mechanisms involved in the termination of the numerous glutamatergic signals have only recently begun to receive attention. In vertebrates, glutamatergic signals are terminated by Na^+/K^+-dependent high-affinity excitatory amino acid transporters (EAAT), which have been cloned and characterized extensively. Cloning and characterization of a few insect homologues have followed, but functional information for these homologues is still limited. Here we report a study conducted on a cloned mosquito EAAT homologue isolated from the vector of the dengue virus, Aedes aegypti. The deduced amino acid sequence of the protein, AeaEAAT, exhibits 40–50% identity with mammalian EAATs, and 45–50% identity to other insect EAATs characterized thus far. It transports l-glutamate as well as l- and d-aspartate with high affinity in the micromolar range, and demonstrates a substrate-elicited anion conductance when heterologously expressed in Xenopus laevis oocytes, as found with mammalian homologues. Analysis of the spatial distribution of the protein demonstrates high expression levels in the adult thorax, which is mostly observed in the thoracic ganglia. Together, the work presented here provides a thorough examination of the role played by glutamate transport in Ae. aegypti

    Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism

    Get PDF
    Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and a-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression

    L-Arginine promotes gut hormone release and reduces food intake in rodents

    Get PDF
    Aims: To investigate the anorectic effect of L‐arginine (L‐Arg) in rodents. Methods: We investigated the effects of L‐Arg on food intake, and the role of the anorectic gut hormones glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY), the G‐protein‐coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents. Results: Oral gavage of L‐Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet‐induced obese mice. Lack of the GPRC6A in mice and subdiaphragmatic vagal deafferentation in rats did not influence these anorectic effects. L‐Arg stimulated GLP‐1 and PYY release in vitro and in vivo. Pharmacological blockade of GLP‐1 and PYY receptors did not influence the anorectic effect of L‐Arg. L‐Arg‐mediated PYY release modulated net ion transport across the gut mucosa. Intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of L‐Arg suppressed food intake in rats. Conclusions: L‐Arg reduced food intake and stimulated gut hormone release in rodents. The anorectic effect of L‐Arg is unlikely to be mediated by GLP‐1 and PYY, does not require GPRC6A signalling and is not mediated via the vagus. I.c.v. and i.p. administration of L‐Arg suppressed food intake in rats, suggesting that L‐Arg may act on the brain to influence food intake. Further work is required to determine the mechanisms by which L‐Arg suppresses food intake and its utility in the treatment of obesity

    Na+-dependent and Na+-independent betaine transport across the apical membrane of rat renal epithelium

    Get PDF
    The low renal excretion of betaine indicates that the kidney efficiently reabsorbs the betaine filtered by the glomeruli but the mechanisms involved in such a process have been scarcely investigated. We have detected concentrative and non-concentrative betaine transport activity in brush-border membrane vesicles (BBMV) from rat renal cortex and medulla. The concentrative system is the Sodium/Imino-acid Transporter 1 (SIT1) because it is Na+- and Cl--dependent, electrogenic and is inhibited by an anti-SIT1 antibody. Its apparent affinity constant for betaine, Kt, is 1.1 ± 0.5 mM and its maximal transport velocity, Vmax, 0.5 ± 0.1 nmol betaine/mg protein/s. Inhibitors of the Na+/Cl-/betaine uptake are l-proline (75%) and cold betaine, l-carnitine and choline (40-60%). Neither creatine, TEA, taurine, β-alanine, GABA nor glycine significantly inhibited Na+/Cl-/betaine uptake. The non-concentrative betaine transport system is Na+- and H+-independent, electroneutral, with a Kt for betaine of 47 ± 7 μM and a Vmax of 7.8 ± 1 pmol betaine/mg protein/s. Its transport activity is nearly abolished by betaine, followed by L-carnitine (70-80%) and proline (40-50%), but a difference from the Na+/Cl-/betaine transport is that it is inhibited by TEA (approx. 50%) and unaffected by choline. The underlying carrier functions as an antiporter linking betaine entry into the BBMV with the efflux of either l-carnitine or betaine, an exchange unaffected by the anti-SIT1 antibody. As far as we know this is the first work reporting that betaine crosses the apical membrane of rat renal epithelium by SIT1 and by a Na+- and H+-independent transport system.Ministerio de Ciencia y Tecnología BFI2003-00222Junta de Andalucía 2010/BIO-14

    Astrocyte glutamine synthetase : pivotal in health and disease

    Get PDF
    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease

    Identification of a Disulfide Bridge in Sodium-Coupled Neutral Amino Acid Transporter 2(SNAT2) by Chemical Modification

    Get PDF
    Sodium-coupled neutral amino acid transporter 2 (SNAT2) belongs to solute carrier 38 (SLC38) family of transporters, which is ubiquitously expressed in mammalian tissues and mediates transport of small, neutral amino acids, exemplified by alanine(Ala, A). Yet structural data on SNAT2, including the relevance of intrinsic cysteine residues on structure and function, is scarce, in spite of its essential roles in many tissues. To better define the potential of intrinsic cysteines to form disulfide bonds in SNAT2, mutagenesis experiments and thiol-specific chemical modifications by N-ethylmaleimide (NEM) and methoxy-polyethylene glycol maleimide (mPEG-Mal, MW 5000) were performed, with or without the reducing regent dithiothreitol (DTT) treatment. Seven single mutant transporters with various cysteine (Cys, C) to alanine (Ala, A) substitutions, and a C245,279A double mutant were introduced to SNAT2 with a hemagglutinin (HA) tag at the C-terminus. The results showed that the cells expressing C245A or C279A were labeled by one equivalent of mPEG-Mal in the presence of DTT, while wild-type or all the other single Cys to Ala mutants were modified by two equivalents of mPEG-Mal. Furthermore, the molecular weight of C245,279A was not changed in the presence or absence of DTT treatment. The results suggest a disulfide bond between Cys245 and Cys279 in SNAT2 which has no effect on cell surface trafficking, as well as transporter function. The proposed disulfide bond may be important to delineate proximity in the extracellular domain of SNAT2 and related proteins

    CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.

    Get PDF
    Na+-coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na+-coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode
    corecore