241,523 research outputs found
Low-density genotype panel for both parentage verification and discovery in a multi-breed sheep population
peer-reviewedThe generally low usage of artificial insemination and single-sire mating in sheep, compounded by mob lambing (and lambing outdoors), implies that parentage assignment in sheep is challenging. The objective here was to develop a low-density panel of single nucleotide polymorphisms (SNPs) for accurate parentage verification and discovery in sheep. Of particular interest was where SNP selection was limited to only a subset of chromosomes, thereby eliminating the ability to accurately impute genome-wide denser marker panels. Data used consisted of 10,933 candidate SNPs on 9,390 purebred sheep. These data consisted of 1,876 validated genotyped sire–offspring pairs and 2,784 validated genotyped dam–offspring pairs. The SNP panels developed consisted of 87 SNPs to 500 SNPs. Parentage verification and discovery were undertaken using 1) exclusion, based on the sharing of at least one allele between candidate parent–offspring pairs, and 2) a likelihood-based approach. Based on exclusion, allowing for one discordant offspring–parent genotype, a minimum of 350 SNPs was required when the goal was to unambiguously identify the true sire or dam from all possible candidates. Results suggest that, if selecting SNPs across the entire genome, a minimum of 250 carefully selected SNPs are required to ensure that the most likely selected parent (based on the likelihood approach) was, in fact, the true parent. If restricting the SNPs to just a subset of chromosomes, the recommendation is to use at least a 300-SNP panel from at least six chromosomes, with approximately an equal number of SNPs per chromosome
Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study
BACKGROUND: Family studies and heritability estimates provide evidence for a genetic contribution to variation in the human life span. METHODS:We conducted a genome wide association study (Affymetrix 100K SNP GeneChip) for longevity-related traits in a community-based sample. We report on 5 longevity and aging traits in up to 1345 Framingham Study participants from 330 families. Multivariable-adjusted residuals were computed using appropriate models (Cox proportional hazards, logistic, or linear regression) and the residuals from these models were used to test for association with qualifying SNPs (70, 987 autosomal SNPs with genotypic call rate [greater than or equal to]80%, minor allele frequency [greater than or equal to]10%, Hardy-Weinberg test p [greater than or equal to] 0.001).RESULTS:In family-based association test (FBAT) models, 8 SNPs in two regions approximately 500 kb apart on chromosome 1 (physical positions 73,091,610 and 73, 527,652) were associated with age at death (p-value < 10-5). The two sets of SNPs were in high linkage disequilibrium (minimum r2 = 0.58). The top 30 SNPs for generalized estimating equation (GEE) tests of association with age at death included rs10507486 (p = 0.0001) and rs4943794 (p = 0.0002), SNPs intronic to FOXO1A, a gene implicated in lifespan extension in animal models. FBAT models identified 7 SNPs and GEE models identified 9 SNPs associated with both age at death and morbidity-free survival at age 65 including rs2374983 near PON1.
In the analysis of selected candidate genes, SNP associations (FBAT or GEE p-value < 0.01) were identified for age at death in or near the following genes: FOXO1A, GAPDH, KL, LEPR, PON1, PSEN1, SOD2, and WRN. Top ranked SNP associations in the GEE model for age at natural menopause included rs6910534 (p = 0.00003) near FOXO3a and rs3751591 (p = 0.00006) in CYP19A1. Results of all longevity phenotype-genotype associations for all autosomal SNPs are web posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. CONCLUSION: Longevity and aging traits are associated with SNPs on the Affymetrix 100K GeneChip. None of the associations achieved genome-wide significance. These data generate hypotheses and serve as a resource for replication as more genes and biologic pathways are proposed as contributing to longevity and healthy aging
- …