6,109,652 research outputs found
Towards an analysis of shear suspension flows using radial basis functions
In this paper, radial basis functions are utilised for numerical prediction of the bulk properties of
particulate suspensions under simple shear conditions. The
suspending fluid is Newtonian and the suspended particles are rigid. Results obtained are compared well with those based on finite elements in the literature
Sequence to Sequence -- Video to Text
Real-world videos often have complex dynamics; and methods for generating
open-domain video descriptions should be sensitive to temporal structure and
allow both input (sequence of frames) and output (sequence of words) of
variable length. To approach this problem, we propose a novel end-to-end
sequence-to-sequence model to generate captions for videos. For this we exploit
recurrent neural networks, specifically LSTMs, which have demonstrated
state-of-the-art performance in image caption generation. Our LSTM model is
trained on video-sentence pairs and learns to associate a sequence of video
frames to a sequence of words in order to generate a description of the event
in the video clip. Our model naturally is able to learn the temporal structure
of the sequence of frames as well as the sequence model of the generated
sentences, i.e. a language model. We evaluate several variants of our model
that exploit different visual features on a standard set of YouTube videos and
two movie description datasets (M-VAD and MPII-MD).Comment: ICCV 2015 camera-ready. Includes code, project page and LSMDC
challenge result
- …