15,615 research outputs found
Explanation of the discrepancy between the measured and atomistically calculated yield stresses in body-centered cubic metals
We propose a mesoscopic model that explains the factor of two to three
discrepancy between experimentally measured yield stresses of BCC metals at low
temperatures and typical Peierls stresses determined by atomistic simulations
of isolated screw dislocations. The model involves a Frank-Read type source
emitting dislocations that become pure screws at a certain distance from the
source and, owing to their high Peierls stress, control its operation. However,
due to the mutual interaction between emitted dislocations the group consisting
of both non-screw and screw dislocations can move at an applied stress that is
about a factor of two to three lower than the stress needed for the glide of
individual screw dislocations.Comment: 4 pages, 2 figures; RevTex4; submitted to PR
Screw dislocation in zirconium: An ab initio study
Plasticity in zirconium is controlled by 1/3 screw dislocations
gliding in the prism planes of the hexagonal close-packed structure. This
prismatic and not basal glide is observed for a given set of transition metals
like zirconium and is known to be related to the number of valence electrons in
the d band. We use ab initio calculations based on the density functional
theory to study the core structure of screw dislocations in zirconium.
Dislocations are found to dissociate in the prism plane in two partial
dislocations, each with a pure screw character. Ab initio calculations also
show that the dissociation in the basal plane is unstable. We calculate then
the Peierls barrier for a screw dislocation gliding in the prism plane and
obtain a small barrier. The Peierls stress deduced from this barrier is lower
than 21 MPa, which is in agreement with experimental data. The ability of an
empirical potential relying on the embedded atom method (EAM) to model
dislocations in zirconium is also tested against these ab initio calculations
Atomistic simulations of kinks in 1/2a<111> screw dislocations in bcc tantalum
Two types of equilibrium core structures (denoted symmetric and asymmetric) for 1/2a screw dislocations in bcc metals have been found in atomistic simulations. In asymmetric (or polarized) cores, the central three atoms simultaneously translate along the Burgers vector direction. This collective displacement of core atoms is called polarization. In contrast, symmetric (nonpolarized) cores have zero core polarization. To examine the possible role of dislocation core in kink-pair formation process, we studied the multiplicity, structural features, and formation energies of 1/3a kinks in 1/2a screw dislocations with different core structures. To do this we used a family of embedded atom model potentials for tantalum (Ta) all of which reproduce bulk properties (density, cohesive energy, and elastic constants) from quantum mechanics calculations but differ in the resulting polarization of 1/2a screw dislocations. For dislocations with asymmetric core, there are two energy equivalent core configurations [with positive (P) and negative (N) polarization], leading to 2 types of (polarization) flips, 8 kinds of isolated kinks, and 16 combinations of kink pairs. We find there are only two elementary kinks, while the others are composites of elementary kinks and flips. In contrast, for screw dislocations with symmetric core, there are only two types of isolated kinks and one kind of kink pair. We find that the equilibrium dislocation core structure of 1/2a screw dislocations is an important factor in determining the kink-pair formation energy
Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W
Screw dislocations in bcc metals display non-planar cores at zero temperature
which result in high lattice friction and thermally activated strain rate
behavior. In bcc W, electronic structure molecular statics calculations reveal
a compact, non-degenerate core with an associated Peierls stress between 1.7
and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations
can only be gained by using more efficient atomistic simulations based on
semiempirical interatomic potentials. In this paper we assess the suitability
of five different potentials in terms of static properties relevant to screw
dislocations in pure W. As well, we perform molecular dynamics simulations of
stress-assisted glide using all five potentials to study the dynamic behavior
of screw dislocations under shear stress. Dislocations are seen to display
thermally-activated motion in most of the applied stress range, with a gradual
transition to a viscous damping regime at high stresses. We find that one
potential predicts a core transformation from compact to dissociated at finite
temperature that affects the energetics of kink-pair production and impacts the
mechanism of motion. We conclude that a modified embedded-atom potential
achieves the best compromise in terms of static and dynamic screw dislocation
properties, although at an expense of about ten-fold compared to central
potentials
Elastic theory of icosahedral quasicrystals - application to straight dislocations
In quasicrystals, there are not only conventional, but also phason
displacement fields and associated Burgers vectors. We have calculated
approximate solutions for the elastic fields induced by two-, three- and
fivefold straight screw- and edge-dislocations in infinite icosahedral
quasicrystals by means of a generalized perturbation method. Starting from the
solution for elastic isotropy in phonon and phason spaces, corrections of
higher order reflect the two-, three- and fivefold symmetry of the elastic
fields surrounding screw dislocations. The fields of special edge dislocations
display characteristic symmetries also, which can be seen from the
contributions of all orders.Comment: 13 pages, 11 figure
Screw dislocations in the field theory of elastoplasticity
A (microscopic) static elastoplastic field theory of dislocations with moment
and force stresses is considered. The relationship between the moment stress
and the Nye tensor is used for the dislocation Lagrangian. We discuss the
stress field of an infinitely long screw dislocation in a cylinder, a dipole of
screw dislocations and a coaxial screw dislocation in a finite cylinder. The
stress fields have no singularities in the dislocation core and they are
modified in the core due to the presence of localized moment stress.
Additionally, we calculated the elastoplastic energies for the screw
dislocation in a cylinder and the coaxial screw dislocation. For the coaxial
screw dislocation we find a modified formula for the so-called Eshelby twist
which depends on a specific intrinsic material length.Comment: 19 pages, LaTeX, 2 figures, Extended version of a contribution to the
symposium on "Structured Media'' dedicated to the memory of Professor
Ekkehart Kr\"oner, 16-21 September 2001, Pozna\'n, Poland. to appear in
Annalen der Physik 11 (2002
Coincident electron channeling and cathodoluminescence studies of threading dislocations in GaN
We combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black–white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated
- …