37,631 research outputs found
Isolation and identification of bacterial endosymbionts in the brooding brittle star Amphipholis squamata
Symbiotic associations with subcuticular bacteria (SCB) have been identified and studied in numerous echinoderms, including the SCB of the brooding brittle star, Amphipholis squamata. These SCB, however, have not been studied using current next generation sequencing technologies. Previous studies on the SCB of A. squamata placed these bacteria in the genus Vibrio (γ-Proteobacteria), but subsequent studies suggested that the SCB are primarily composed of α-Proteobacteria. The present study examines the taxonomic composition of SCB associated with A. squamata from the Northwest Atlantic. DNA was extracted using a CTAB protocol and 16S rRNA sequences were amplified using gene-targeted PCR on an Illumina HiSeq at the UNH Genomics Center. Results show the presence of a single dominant bacterial type, within the family Rhodobacteraceae, which composes 70-80% of the A. squamata microbiome. The majority of sequences recovered from A. squamata were identified as members of the genus Octadecabacter (97% similarity). By comparison, adjacent seawater and sediment bacterial communities were significantly more diverse, hosting bacteria in the phyla Proteobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, and Actinobacteria. Thus, a distinct SCB community is clearly evident in A. squamata. Here, we hypothesize the potential functions of this symbiotic community, in addition to what may be driving the unique dominance of a member of the family Rhodobacteraceae. Although metatranscriptome studies are needed to characterize the functional attributes of the SCB community, we have identified a specific and potentially beneficial symbiont that may support metabolic requirements and nutrient uptake vital to the reproduction of A. squamata
An analysis of the boundary layer in the 1D surface Cauchy–Born model
The surface Cauchy–Born (SCB) method is a computational multi-scale method for the simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method, focused on the role of surface relaxation. In a linearized 1D model we show that the error committed by the SCB method is O(1) in the mesh size; however, we are able to identify an alternative "approximation parameter" – the stiffness of the interaction potential – with respect to which the relative error in the mean strain is exponentially small. Our analysis naturally suggests an improvement of the SCB model by enforcing atomistic mesh spacing in the normal direction at the free boundary. In this case we even obtain pointwise error estimates for the strain
Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions
Objectives: Changes in subchondral bone (SCB) and cross-talk with articular cartilage (AC) have been linked to osteoarthritis (OA). Using micro-computed tomography (micro-CT) this study: (1) examines changes in SCB architecture in a non-invasive loading mouse model in which focal AC lesions are induced selectively in the lateral femur, and (2) determines any modifications in the contralateral knee, linked to changes in gait, which might complicate use of this limb as an internal control. Methods: Right knee joints of CBA mice were loaded: once with 2weeks of habitual use (n=7), for 2weeks (n=8) or for 5weeks (n=5). Both left (contralateral) and right (loaded) knees were micro-CT scanned and the SCB and trabecular bone analysed. Gait analysis was also performed. Results: These analyses showed a significant increase in SCB thickness in the lateral compartments in joints loaded for 5weeks, which was most marked in the lateral femur; the contralateral non-loaded knee also showed transient SCB thickening (loaded once and repetitively). Epiphyseal trabecular bone BV/TV and trabecular thickness were also increased in the lateral compartments after 5 weeks of loading, and in all joint compartments in the contralateral knee. Gait analysis showed that applied loading only affected gait in the contralateral himd-limb in all groups of mice from the second week after the first loading episode. Conclusions: These data indicate a spatial link between SCB thickening and AC lesions following mechanical trauma, and the clear limitations associated with the use of contralateral joints as controls in such OA models, and perhaps in OA diagnosis
Fast readout of a single Cooper-pair box using its quantum capacitance
We have fabricated a single Cooper-pair box (SCB) together with an on-chip
lumped element resonator. By utilizing the quantum capacitance of the SCB, its
state can be read out by detecting the phase of a radio-frequency (rf) signal
reflected off the resonator. The resonator was optimized for fast readout. By
studying quasiparticle tunneling events in the SCB, we have characterized the
performance of the readout and found that we can perform a single shot parity
measurement in approximately 50 ns. This is an order of magnitude faster than
previously reported measurements.Comment: 7 pages, 5 figure
New remarks on the linear constraint self-dual boson and Wess-Zumino terms
In this work we prove in a precise way that the soldering formalism can be
applied to the Srivastava chiral boson (SCB), in contradiction with some
results appearing in the literature. We have promoted a canonical
transformation that shows directly that the SCB is composed of two
Floreanini-Jackiw's particles with the same chirality which spectrum is a
vacuum-like one. As another conflictive result we have proved that a
Wess-Zumino term used in the literature consists of the scalar field, once
again denying the assertion that the WZ term adds a new degree of freedom to
the SCB theory in order to modify the physics of the system.Comment: 6 pages, Revtex. Final version to appear in Physical Review
Histological features of the distal third metacarpal bone in thoroughbred racehorses, with and without lateral condylar fractures
A detailed histopathological study of the distal third metacarpal bone of Thoroughbred racehorses was undertaken to characterize lesions observed previously on magnetic resonance imaging (MRI). The bones were selected and grouped on the basis of MRI features. Representative sections in different planes were processed for histopathology. All lesions observed in the articular cartilage (AC) and subchondral bone (SCB) were recorded and graded with a scoring system, based partially on the Osteoarthritis Research Society International grading system. The scoring system included the severity of the lesion. Descriptive statistics and linear mixed effects models were performed. A positive correlation was observed between the severity of histopathological changes in the superficial and deeper osteochondral tissues, and between the number of race starts and AC score. Age was not correlated with AC or SCB score. A moderate variation in AC and SCB scores was observed between the groups; however, there were differences within individual bones. Bones with focal palmar necrosis (FPN) showed significant differences in the histological scoring of the AC compared with bones without FPN. Bones with incomplete fractures or larger areas of bone remodelling showed significant differences in SCB pathology when compared with bones with FPN. Haematoidin was detected in areas with excessive SCB and cancellous bone sclerosis and/or irregular bone density. This finding is suggestive of poor blood perfusion in these areas
New Hope for the Oceans: Engaging Faith-Based Communities in Marine Conservation
Science alone cannot protect the oceans and their biological diversity. Whereas, scientists can identify problems and empirical steps toward their resolution, support for research, problem solving, and implementation of solutions must come from societal sources. Among the most promising are religious communities whose members are motivated by their faith to collaborate with marine scientists in achieving shared goals. Many reasons prevail for engaging faith communities in mitigating assaults on the oceans and protecting them from threats to their functioning. Participants in the open forum convened by the Religion and Conservation Biology Working Group of the Society for Conservation Biology during the 4th International Marine Conservation Congress shared their insights on (1) why and how marine researchers and conservation practitioners can best involve faith communities, (2) actions and attitudes that deter constructive engagement with faith communities, and (3) ways forward that the SCB should consider facilitating. Among ways forward identified are the Best Practices Project initiated recently by the RCBWG, adding cultural values and ethics as disciplines SCB members should probe when addressing conservation problems, regularly including cultural values and ethics in panels with other disciplines at international and regional SCB congresses, and appointing an associate editor of SCB publications who will assure the inclusion of articles in which religious and spiritual worldviews, values, and ethics are integrated with the conservation sciences
- …