867,938 research outputs found
Resource Usage Protocols for Iterators
We discuss usage protocols for iterator objects that prevent concurrent modifications of the underlying collection while iterators are in progress. We formalize these protocols in Java-like object interfaces, enriched with separation logic contracts. We present examples of iterator clients and proofs that they adhere to the iterator protocol, as well as examples of iterator implementations and proofs that they implement the iterator interface
Developing Resource Usage Service in WLCG
According to the Memorandum of Understanding (MoU) of the World-wide LHC Computing Grid (WLCG) project, participating sites are required to provide resource usage or accounting data to the Grid Operational Centre (GOC) to enrich the understanding of how shared resources are used, and to provide information for improving the effectiveness of resource allocation. As a multi-grid environment, the accounting process of WLCG is currently enabled by four accounting systems, each of which was developed independently by constituent grid projects. These accounting systems were designed and implemented based on project-specific local understanding of requirements, and therefore lack interoperability. In order to automate the accounting process in WLCG, three transportation methods are being introduced for streaming accounting data metered by heterogeneous accounting systems into GOC at Rutherford Appleton Laboratory (RAL) in the UK, where accounting data are aggregated and accumulated throughout the year. These transportation methods, however, were introduced on a per accounting-system basis, i.e. targeting at a particular accounting system, making them hard to reuse and customize to new requirements. This paper presents the design of WLCG-RUS system, a standards-compatible solution providing a consistent process for streaming resource usage data across various accounting systems, while ensuring interoperability, portability, and customization
Model checking usage policies
We study usage automata, a formal model for specifying policies on the usage of resources. Usage automata extend finite state automata with some additional features, parameters and guards, that improve their expressivity. We show that usage automata are expressive enough to model policies of real-world applications. We discuss their expressive power, and we prove that the problem of telling whether a computation complies with a usage policy is decidable. The main contribution of this paper is a model checking technique for usage automata. The model is that of usages, i.e. basic processes that describe the possible patterns of resource access and creation. In spite of the model having infinite states, because of recursion and resource creation, we devise a polynomial-time model checking technique for deciding when a usage complies with a usage policy
The benefits of resource discovery for publishers: a librarianâs view
A core goal of librarians is to maximize usage of the content to which their libraries subscribe. Webscale or resource discovery systems offer a single search box for library users to access subscribed content. This article examines usage data at the University of Huddersfield to show how resource discovery has helped to increase the usage of publisher content, which has been made available to discovery vendors and considers the implications for publishers who are yet to do this. The article concludes that resource discovery systems have effectively levelled the playing field, allowing small to medium sized publishers to make content discoverable to users, and encourages publishers who do not have their content indexed in resource discovery systems to speak to discovery service vendor in order to do so at the earliest opportunity
A General Framework for Static Profiling of Parametric Resource Usage
Traditional static resource analyses estimate the total resource usage of a
program, without executing it. In this paper we present a novel resource
analysis whose aim is instead the static profiling of accumulated cost, i.e.,
to discover, for selected parts of the program, an estimate or bound of the
resource usage accumulated in each of those parts. Traditional resource
analyses are parametric in the sense that the results can be functions on input
data sizes. Our static profiling is also parametric, i.e., our accumulated cost
estimates are also parameterized by input data sizes. Our proposal is based on
the concept of cost centers and a program transformation that allows the static
inference of functions that return bounds on these accumulated costs depending
on input data sizes, for each cost center of interest. Such information is much
more useful to the software developer than the traditional resource usage
functions, as it allows identifying the parts of a program that should be
optimized, because of their greater impact on the total cost of program
executions. We also report on our implementation of the proposed technique
using the CiaoPP program analysis framework, and provide some experimental
results. This paper is under consideration for acceptance in TPLP.Comment: Paper presented at the 32nd International Conference on Logic
Programming (ICLP 2016), New York City, USA, 16-21 October 2016, 22 pages,
LaTe
- âŠ