14,514 research outputs found
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Extreme events in discrete nonlinear lattices
We perform statistical analysis on discrete nonlinear waves generated though
modulational instability in the context of the Salerno model that interpolates
between the intergable Ablowitz-Ladik (AL) equation and the nonintegrable
discrete nonlinear Schrodinger (DNLS) equation. We focus on extreme events in
the form of discrete rogue or freak waves that may arise as a result of rapid
coalescence of discrete breathers or other nonlinear interaction processes. We
find power law dependence in the wave amplitude distribution accompanied by an
enhanced probability for freak events close to the integrable limit of the
equation. A characteristic peak in the extreme event probability appears that
is attributed to the onset of interaction of the discrete solitons of the AL
equation and the accompanied transition from the local to the global
stochasticity monitored through the positive Lyapunov exponent of a nonlinear
map.Comment: 5 pages, 4 figures; reference added, figure 2 correcte
Dynamic polarization of graphene by moving external charges: random phase approximation
We evaluate the stopping and image forces on a charged particle moving
parallel to a doped sheet of graphene by using the dielectric response
formalism for graphene's -electron bands in the random phase approximation
(RPA). The forces are presented as functions of the particle speed and the
particle distance for a broad range of charge-carrier densities in graphene. A
detailed comparison with the results from a kinetic equation model reveal the
importance of inter-band single-particle excitations in the RPA model for high
particle speeds. We also consider the effects of a finite gap between graphene
and a supporting substrate, as well as the effects of a finite damping rate
that is included through the use of Mermin's procedure. The damping rate is
estimated from a tentative comparison of the Mermin loss function with a HREELS
experiment. In the limit of low particle speeds, several analytical results are
obtained for the friction coefficient that show an intricate relationship
between the charge-carrier density, the damping rate, and the particle
distance, which may be relevant to surface processes and electrochemistry
involving graphene.Comment: 14 pages, 10 figures, accepted for publication in Phys. Rev.
A New Method for Multi-Bit and Qudit Transfer Based on Commensurate Waveguide Arrays
The faithful state transfer is an important requirement in the construction
of classical and quantum computers. While the high-speed transfer is realized
by optical-fibre interconnects, its implementation in integrated optical
circuits is affected by cross-talk. The cross-talk between densely packed
optical waveguides limits the transfer fidelity and distorts the signal in each
channel, thus severely impeding the parallel transfer of states such as
classical registers, multiple qubits and qudits. Here, we leverage on the
suitably engineered cross-talk between waveguides to achieve the parallel
transfer on optical chip. Waveguide coupling coefficients are designed to yield
commensurate eigenvalues of the array and hence, periodic revivals of the input
state. While, in general, polynomially complex, the inverse eigenvalue problem
permits analytic solutions for small number of waveguides. We present exact
solutions for arrays of up to nine waveguides and use them to design realistic
buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the
proposed solution are discussed in the context of available fabrication
techniques
Baryon Fields with U_L(3) \times U_R(3) Chiral Symmetry: Axial Currents of Nucleons and Hyperons
We use the conventional F and D octet and decimet generator matrices to
reformulate chiral properties of local (non-derivative) and one-derivative
non-local fields of baryons consisting of three quarks with flavor SU(3)
symmetry that were expressed in SU(3) tensor form in Ref. [12]. We show
explicitly the chiral transformations of the [(6,3)\oplus(3,6)] chiral
multiplet in the "SU(3) particle basis", for the first time to our knowledge,
as well as those of the (3,\bar{3}) \oplus (\bar{3}, 3), (8,1) \oplus (1,8)
multiplets, which have been recorded before in Refs. [4,5]. We derive the
vector and axial-vector Noether currents, and show explicitly that their zeroth
(charge-like) components close the SU_L(3) \times SU_R(3) chiral algebra. We
use these results to study the effects of mixing of (three-quark) chiral
multiplets on the axial current matrix elements of hyperons and nucleons. We
show, in particular, that there is a strong correlation, indeed a definite
relation between the flavor-singlet (i.e. the zeroth), the isovector (the
third) and the eighth flavor component of the axial current, which is in decent
agreement with the measured ones.Comment: one typo correction, and accepted by PR
Observation of a two-dimensional electron gas at CaTiO film surfaces
The two-dimensional electron gas at the surface of titanates gathered
attention due to its potential to replace conventional silicon based
semiconductors in the future. In this study, we investigated films of the
parent perovskite CaTiO, grown by pulsed laser deposition, by means of
angular-resolved photoelectron spectroscopy. The films show a c(4x2) surface
reconstruction after the growth that is reduced to a p(2x2) reconstruction
under UV-light. At the CaTiO film surface, a two-dimensional electron gas
(2DEG) is found with an occupied band width of 400 meV. With our findings
CaTiO is added to the group of oxides with a 2DEG at their surface. Our
study widens the phase space to investigate strontium and barium doped
CaTiO and the interplay of ferroelectric properties with the 2DEG at oxide
surfaces. This could open up new paths to tailor two-dimensional transport
properties of these systems towards possible applications
Hidden geometries in networks arising from cooperative self-assembly
Multilevel self-assembly involving small structured groups of nano-particles
provides new routes to development of functional materials with a sophisticated
architecture. Apart from the inter-particle forces, the geometrical shapes and
compatibility of the building blocks are decisive factors in each phase of
growth. Therefore, a comprehensive understanding of these processes is
essential for the design of large assemblies of desired properties. Here, we
introduce a computational model for cooperative self-assembly with simultaneous
attachment of structured groups of particles, which can be described by
simplexes (connected pairs, triangles, tetrahedrons and higher order cliques)
to a growing network, starting from a small seed. The model incorporates
geometric rules that provide suitable nesting spaces for the new group and the
chemical affinity of the system to accepting an excess number of
particles. For varying chemical affinity, we grow different classes of
assemblies by binding the cliques of distributed sizes. Furthermore, to
characterise the emergent large-scale structures, we use the metrics of graph
theory and algebraic topology of graphs, and 4-point test for the intrinsic
hyperbolicity of the networks. Our results show that higher Q-connectedness of
the appearing simplicial complexes can arise due to only geometrical factors,
i.e., for , and that it can be effectively modulated by changing the
chemical potential and the polydispersity of the size of binding simplexes. For
certain parameters in the model we obtain networks of mono-dispersed clicks,
triangles and tetrahedrons, which represent the geometrical descriptors that
are relevant in quantum physics and frequently occurring chemical clusters.Comment: 9 pages, 8 figure