118,205 research outputs found

    A biologically inspired computational vision front-end based on a self-organised pseudo-randomly tessellated artificial retina

    Get PDF
    This paper considers the construction of a biologically inspired front-end for computer vision based on an artificial retina pyramid with a self-organised pseudo-randomly tessellated receptive field tessellation. The organisation of photoreceptors and receptive fields in biological retinae locally resembles a hexagonal mosaic, whereas globally these are organised with a very densely tessellated central foveal region which seamlessly merges into an increasingly sparsely tessellated periphery. In contrast, conventional computer vision approaches use a rectilinear sampling tessellation which samples the whole field of view with uniform density. Scale-space interest points which are suitable for higher level attention and reasoning tasks are efficiently extracted by our vision front-end by performing hierarchical feature extraction on the pseudo-randomly spaced visual information. All operations were conducted on a geometrically irregular foveated representation (data structure for visual information) which is radically different to the uniform rectilinear arrays used in conventional computer vision

    A novel image inpainting framework based on multilevel image pyramids

    Get PDF
    Image inpainting is the art of manipulating an image so that it is visually unrecognizable way. A considerable amount of research has been done in this area over the last few years. However, the state of art techniques does suffer from computational complexities and plausible results. This paper proposes a multi-level image pyramid-based image inpainting algorithm. The image inpainting algorithm starts with the coarsest level of the image pyramid and overpainting information is transferred to the subsequent levels until the bottom level gets inpainted. The search strategy used in the algorithm is based on hashing the coherent information in an image which makes the search fast and accurate. Also, the search space is constrained based on the propagated information thereby reducing the complexity of the algorithm. Compared to other inpainting methods; the proposed algorithm inpaints the target region with better plausibility and human vision conformation. Experimental results show that the proposed algorithm achieves better results as compared to other inpainting techniques

    Improved Stroke Detection at Early Stages Using Haar Wavelets and Laplacian Pyramid

    Get PDF
    Stroke merupakan pembunuh nomor tiga di dunia, namun hanya sedikit metode tentang deteksi dini. Oleh karena itu dibutuhkan metode untuk mendeteksi hal tersebut. Penelitian ini mengusulkan sebuah metode gabungan untuk mendeteksi dua jenis stroke secara simultan. Haar wavelets untuk mendeteksi stroke hemoragik dan Laplacian pyramid untuk mendeteksi stroke iskemik. Tahapan dalam penelitian ini terdiri dari pra proses tahap 1 dan 2, Haar wavelets, Laplacian pyramid, dan perbaikan kualitas citra. Pra proses adalah menghilangkan bagian tulang tengkorak, reduksi derau, perbaikan kontras, dan menghilangkan bagian selain citra otak. Kemudian dilakukan perbaikan citra. Selanjutnya Haar wavelet digunakan untuk ekstraksi daerah hemoragik sedangkan Laplacian pyramid untuk ekstraksi daerah iskemik. Tahapan terakhir adalah menghitung fitur Grey Level Cooccurrence Matrix (GLCM) sebagai fitur untuk proses klasifikasi. Hasil visualisasi diproses lanjut untuk ekstrasi fitur menggunakan GLCM dengan 12 fitur dan kemudian GLCM dengan 4 fitur. Untuk proses klasifikasi digunakan SVM dan KNN, sedangkan pengukuran performa menggunakan akurasi. Jumlah data hemoragik dan iskemik adalah 45 citra yang dibagi menjadi 2 bagian, 28 citra untuk pengujian dan 17 citra untuk pelatihan. Hasil akhir menunjukkan akurasi tertinggi yang dicapai menggunakan SVM adalah 82% dan KNN adalah 88%

    Contains and Inside relationships within combinatorial Pyramids

    Full text link
    Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids are used within the segmentation framework to encode a hierarchy of partitions. The different graph models used within the irregular pyramid framework encode different types of relationships between regions. This paper compares different graph models used within the irregular pyramid framework according to a set of relationships between regions. We also define a new algorithm based on a pyramid of combinatorial maps which allows to determine if one region contains the other using only local calculus.Comment: 35 page
    corecore