721,150 research outputs found
First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties
A well-defined notion of chemical compound space (CCS) is essential for
gaining rigorous control of properties through variation of elemental
composition and atomic configurations. Here, we review an atomistic first
principles perspective on CCS. First, CCS is discussed in terms of variational
nuclear charges in the context of conceptual density functional and molecular
grand-canonical ensemble theory. Thereafter, we revisit the notion of compound
pairs, related to each other via "alchemical" interpolations involving
fractional nuclear chargens in the electronic Hamiltonian. We address Taylor
expansions in CCS, property non-linearity, improved predictions using reference
compound pairs, and the ounce-of-gold prize challenge to linearize CCS.
Finally, we turn to machine learning of analytical structure property
relationships in CCS. These relationships correspond to inferred, rather than
derived through variational principle, solutions of the electronic
Schr\"odinger equation
Decompounding on compact Lie groups
Noncommutative harmonic analysis is used to solve a nonparametric estimation
problem stated in terms of compound Poisson processes on compact Lie groups.
This problem of decompounding is a generalization of a similar classical
problem. The proposed solution is based on a char- acteristic function method.
The treated problem is important to recent models of the physical inverse
problem of multiple scattering.Comment: 26 pages, 3 figures, 25 reference
Nonparametric estimation of the heterogeneity of a random medium using Compound Poisson Process modeling of wave multiple scattering
In this paper, we present a nonparametric method to estimate the
heterogeneity of a random medium from the angular distribution of intensity
transmitted through a slab of random material. Our approach is based on the
modeling of forward multiple scattering using Compound Poisson Processes on
compact Lie groups. The estimation technique is validated through numerical
simulations based on radiative transfer theory.Comment: 23 pages, 8 figures, 21 reference
Field-concentration phase diagram of a quantum spin liquid with bond defects
The magnetic susceptibility of the gapped quantum spin liquid compound
(CHN)CuCl and its chemically disordered derivatives
(CHN)Cu(ClBr) are systematically studied
in magnetic fields of up to 45 T, as a function of Br concentration. The
corresponding field-temperature and field-concentration phase diagrams are
determined. Measurements on the disorder-free parent compound are not fully
consistent with previously published results by other authors [PRL{\bf 96},
257203 (2006)]. The effect of Br/Cl substitution on the magnetic properties is
superficially similar to that of finite temperature. However, important
differences are identified and discussed with reference to the previously
studied magnetic excitation spectra.Comment: 6 pages, 6 figures. Submitted to PRB as regular pape
Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport
The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan
MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation
An architectural approach to self-adaptive systems involves runtime change of
system configuration (i.e., the system's components, their bindings and
operational parameters) and behaviour update (i.e., component orchestration).
Thus, dynamic reconfiguration and discrete event control theory are at the
heart of architectural adaptation. Although controlling configuration and
behaviour at runtime has been discussed and applied to architectural
adaptation, architectures for self-adaptive systems often compound these two
aspects reducing the potential for adaptability. In this paper we propose a
reference architecture that allows for coordinated yet transparent and
independent adaptation of system configuration and behaviour
Virtual chemical reactions for drug design
Two methods for the fast, fragment-based combinatorial molecule assembly were developed. The software COLIBREE® (Combinatorial Library Breeding) generates candidate structures from scratch, based on stochastic optimization [1]. Result structures of a COLIBREE design run are based on a fixed scaffold and variable linkers and side-chains. Linkers representing virtual chemical reactions and side-chain building blocks obtained from pseudo-retrosynthetic dissection of large compound databases are exchanged during optimization. The process of molecule design employs a discrete version of Particle Swarm Optimization (PSO) [2]. Assembled compounds are scored according to their similarity to known reference ligands. Distance to reference molecules is computed in the space of the topological pharmacophore descriptor CATS [3]. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor (PPAR gamma) selective agonists. In a second approach, we developed the formal grammar Reaction-MQL [4] for the in silico representation and application of chemical reactions. Chemical transformation schemes are defined by functional groups participating in known organic reactions. The substructures are specified by the linear Molecular Query Language (MQL) [5]. The developed software package contains a parser for Reaction-MQL-expressions and enables users to design, test and virtually apply chemical reactions. The program has already been used to create combinatorial libraries for virtual screening studies. It was also applied in fragmentation studies with different sets of retrosynthetic reactions and various compound libraries
First principles investigation of ferroelectricity in epitaxially strained PbTiO
The structure and polarization of the as-yet hypothetical Ruddlesden-Popper
compound PbTiO are investigated within density-functional theory. Zone
enter phonons of the high-symmetry KNiF-type reference structure, space
group , were calculated. At the theoretical ground-state lattice
constants, there is one unstable infrared-active phonon. This phonon freezes in
to give the ferroelectric state. As a function of epitaxial strain, two
additional ferroelectric phases are found, with space groups and
at compressive and tensile strains, respectively.Comment: 4 pages, 4 figure
- …