49,485 research outputs found
Recommender Systems
The ongoing rapid expansion of the Internet greatly increases the necessity
of effective recommender systems for filtering the abundant information.
Extensive research for recommender systems is conducted by a broad range of
communities including social and computer scientists, physicists, and
interdisciplinary researchers. Despite substantial theoretical and practical
achievements, unification and comparison of different approaches are lacking,
which impedes further advances. In this article, we review recent developments
in recommender systems and discuss the major challenges. We compare and
evaluate available algorithms and examine their roles in the future
developments. In addition to algorithms, physical aspects are described to
illustrate macroscopic behavior of recommender systems. Potential impacts and
future directions are discussed. We emphasize that recommendation has a great
scientific depth and combines diverse research fields which makes it of
interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports
Web based Recommender Systems and Rating Prediction
This project implements a recommender system on large dataset of Netflix’s movies. This project also tries to improve recommender systems by incorporating confidence interval and genres of movies. This new approach enhances the performance and quality of service of recommender systems and gives better result than Netflix commercial recommender system, Cinematch
An improved switching hybrid recommender system using naive Bayes classifier and collaborative filtering
Recommender Systems apply machine learning and data mining techniques for filtering unseen information and can predict whether a user would like a given resource. To date a number of recommendation algorithms have been proposed, where collaborative filtering and content-based filtering are the two most famous and adopted recommendation techniques. Collaborative filtering recommender systems recommend items by identifying other users with similar taste and use their opinions for recommendation; whereas content-based recommender systems recommend items based on the content information of the items. These systems suffer from scalability, data sparsity, over specialization, and cold-start problems resulting in poor quality recommendations and reduced coverage. Hybrid recommender systems combine individual systems to avoid certain aforementioned limitations of these systems. In this paper, we proposed a unique switching hybrid recommendation approach by combining a Naive Bayes classification approach with the collaborative filtering. Experimental results on two different data sets, show that the proposed algorithm is scalable and provide better performance – in terms of accuracy and coverage – than other algorithms while at the same time eliminates some recorded problems with the recommender systems
Exploiting Synergy Between Ontologies and Recommender Systems
Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations. Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured
Promoting cold-start items in recommender systems
As one of major challenges, cold-start problem plagues nearly all recommender
systems. In particular, new items will be overlooked, impeding the development
of new products online. Given limited resources, how to utilize the knowledge
of recommender systems and design efficient marketing strategy for new items is
extremely important. In this paper, we convert this ticklish issue into a clear
mathematical problem based on a bipartite network representation. Under the
most widely used algorithm in real e-commerce recommender systems, so-called
the item-based collaborative filtering, we show that to simply push new items
to active users is not a good strategy. To our surprise, experiments on real
recommender systems indicate that to connect new items with some less active
users will statistically yield better performance, namely these new items will
have more chance to appear in other users' recommendation lists. Further
analysis suggests that the disassortative nature of recommender systems
contributes to such observation. In a word, getting in-depth understanding on
recommender systems could pave the way for the owners to popularize their
cold-start products with low costs.Comment: 6 pages, 6 figure
Exploiting synergy between ontologies and recommender systems
Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations.Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain.
This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured
- …