577,583 research outputs found
Kinetics of n-Butoxy and 2-Pentoxy Isomerization and Detection of Primary Products by Infrared Cavity Ringdown Spectroscopy
The primary products of n-butoxy and 2-pentoxy isomerization in the presence and absence of O_2 have been detected using pulsed laser photolysis-cavity ringdown spectroscopy (PLP-CRDS). Alkoxy radicals n-butoxy and 2-pentoxy were generated by photolysis of alkyl nitrite precursors (n-butyl nitrite or 2-pentyl nitrite, respectively), and the isomerization products with and without O_2 were detected by infrared cavity ringdown spectroscopy 20 μs after the photolysis. We report the mid-IR OH stretch (ν_1) absorption spectra for δ-HO-1-C_4H_8•, δ-HO-1-C_4H_8OO•, δ-HO-1-C_5H_(10)•, and δ-HO-1-C_5H_(10)OO•. The observed ν_1 bands are similar in position and shape to the related alcohols (n-butanol and 2-pentanol), although the HOROO• absorption is slightly stronger than the HOR• absorption. We determined the rate of isomerization relative to reaction with O_2 for the n-butoxy and 2-pentoxy radicals by measuring the relative ν_1 absorbance of HOROO• as a function of [O_2]. At 295 K and 670 Torr of N_2 or N_2/O_2, we found rate constant ratios of k_(isom)/k_(O2) = 1.7 (±0.1) × 10^(19) cm^(–3) for n-butoxy and k_(isom)/k_(O2) = 3.4(±0.4) × 10^(19) cm^(–3) for 2-pentoxy (2σ uncertainty). Using currently known rate constants k_(O2), we estimate isomerization rates of k_(isom) = 2.4 (±1.2) × 10^5 s^(–1) and k_(isom) ≈ 3 × 10^5 s^(–1) for n-butoxy and 2-pentoxy radicals, respectively, where the uncertainties are primarily due to uncertainties in k_(O2). Because isomerization is predicted to be in the high pressure limit at 670 Torr, these relative rates are expected to be the same at atmospheric pressure. Our results include corrections for prompt isomerization of hot nascent alkoxy radicals as well as reaction with background NO and unimolecular alkoxy decomposition. We estimate prompt isomerization yields under our conditions of 4 ± 2% and 5 ± 2% for n-butoxy and 2-pentoxy formed from photolysis of the alkyl nitrites at 351 nm. Our measured relative rate values are in good agreement with and more precise than previous end-product analysis studies conducted on the n-butoxy and 2-pentoxy systems. We show that reactions typically neglected in the analysis of alkoxy relative kinetics (decomposition, recombination with NO, and prompt isomerization) may need to be included to obtain accurate values of k_(isom)/k_(O2)
Linear Relationship between Temperature and the Apparent Reaction Rate Constant of Hydroxyl Radical with 4-chlorobenzoic Acid
4-Chlorobenzoic acid (p-CBA) is frequently used as a hydroxyl radical (HO·) probe substance in studies of ozonation and advanced oxidation processes. However, the temperature dependence of the reaction between HO· and p-CBA remains unclear. In this context, we identified the relationship between temperature ((Formula presented.), K) and the apparent second-order reaction rate constant of HO· with p- CBA (kHO⋅, p−CBA(T) , M⁻¹ s⁻¹): 10¹⁰. They were measured by a novel competitive method using 2-methylpropan-2-ol (tert-butyl alcohol) as a reference substance in the range of 1.0–40.0℃. The linear regression equation was more appropriate than the exponential regression equation to express this relationship. More generally, our simulation shows that the linear regression equation can be more accurate than the exponential regression equation to express the relationship between temperature and apparent reaction rate constants of HO
Measurement of atmospheric HO by a chemical method
The parameters for a chemical technique can be outlined from the following set of desirable goals: (1) sufficient conversion of tracer species A to product B that B can be measured quantitatively in the presence of A and a great excess of air; (2) specificity of reaction such that A is converted to B only by reaction with HO; and (3) sufficient sensitivity for detection that the ambient concentration of HO is not seriously perturbed by the presence of A and B. This proposed study involves finding a chemical reaction specific enough for OH, and a measurement of the product formed. What one wants is a rate constant of about 10 to the -10th power cu cm/s, so that 0.1 percent of the OH will be converted in 100 s. Laboratory studies are needed to find a reaction which will fill this bill, yielding a product in quantity sufficient for precise measurement. This is an extremely fast constant and the search may be difficult. Again there is a question of perturbing the local environment, while still providing a sensitive measurement. Also the temperature and pressure dependence of the reaction rate is a complicated function for many of these species (that is, one must use a RRKM or Troe-based picture), and must be taken into account
A Review on Hemeoxygenase-2: Focus on Cellular Protection and Oxygen Response
Hemeoxygenase (HO) system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia
Acetonyl Peroxy and Hydro Peroxy Self- and Cross- Reactions: Kinetics, Mechanism, and Chaperone Enhancement from the Perspective of the Hydroxyl Radical Product
Pulsed laser photolysis coupled with infrared (IR) wavelength modulation spectroscopy and ultraviolet (UV) absorption spectroscopy was used to study the kinetics and branching fractions for the acetonyl peroxy (CH₃C(O)CH₂O₂) self-reaction and its reaction with hydro peroxy (HO₂) at a temperature of 298 K and pressure of 100 Torr. Near-IR and mid-IR lasers simultaneously monitored HO₂ and hydroxyl, OH, respectively, while UV absorption measurements monitored the CH₃C(O)CH₂O₂ concentrations. The overall rate constant for the reaction between CH₃C(O)CH₂O₂ and HO₂ was found to be (5.5 ± 0.5) × 10⁻¹² cm³ molecule⁻¹ s⁻¹ and the branching fraction for OH yield from this reaction was directly measured as 0.30 ± 0.04. The CH₃C(O)CH₂O₂ self-reaction rate constant was measured to be (4.8 ± 0.8) × 10⁻¹² cm³ molecule⁻¹ s⁻¹ and the branching fraction for alkoxy formation was inferred from secondary chemistry as 0.33 ± 0.13. An increase in the rate of the HO₂ self-reaction was also observed as a function of acetone (CH₃C(O)CH₃) concentration which is interpreted as a chaperone effect resulting from hydrogen-bond complexation between HO₂ and CH₃C(O)CH₃. The chaperone enhancement coefficient for CH₃C(O)CH₃ was determined to be k”A = (4.0 ± 0.2) x 10⁻²⁹ cm⁶ molecule⁻² s⁻¹ and the equilibrium constant for HO₂•CH₃C(O)CH₃ complex formation was found to be K_c(R15) = (2.0 ± 0.89) × 10⁻¹⁸ cm³ molecule⁻¹; from these values the rate constant for the HO₂ + HO₂•CH₃C(O)CH₃ reaction was estimated to be (2 ± 1) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹. Results from UV absorption cross-section measurements of CH₃C(O)CH₂O₂ and prompt OH radical yields arising from possible oxidation of the CH₃C(O)CH₃-derived alkyl radical are also discussed. Using theoretical methods, no likely pathways for the observed prompt OH radical formation have been found and thus remains unexplained
Acetonyl Peroxy and Hydro Peroxy Self- and Cross-Reactions: Kinetics, Mechanism, and Chaperone Enhancement from the Perspective of the Hydroxyl Radical Product
Pulsed laser photolysis coupled with infrared (IR) wavelength modulation spectroscopy and ultraviolet (UV) absorption spectroscopy was used to study the kinetics and branching fractions for the acetonyl peroxy (CH₃C(O)CH₂O₂) self-reaction and its reaction with hydro peroxy (HO₂) at a temperature of 298 K and pressure of 100 Torr. Near-IR and mid-IR lasers simultaneously monitored HO₂ and hydroxyl, OH, respectively, while UV absorption measurements monitored the CH₃C(O)CH₂O₂ concentrations. The overall rate constant for the reaction between CH₃C(O)CH₂O₂ and HO₂ was found to be (5.5 ± 0.5) × 10⁻¹² cm³ molecule⁻¹ s⁻¹, and the branching fraction for OH yield from this reaction was directly measured as 0.30 ± 0.04. The CH₃C(O)CH₂O₂ self-reaction rate constant was measured to be (4.8 ± 0.8) × 10⁻¹² cm³ molecule⁻¹ s⁻¹, and the branching fraction for alkoxy formation was inferred from secondary chemistry as 0.33 ± 0.13. An increase in the rate of the HO₂ self-reaction was also observed as a function of acetone (CH₃C(O)CH₃) concentration which is interpreted as a chaperone effect, resulting from hydrogen-bond complexation between HO₂ and CH₃C(O)CH₃. The chaperone enhancement coefficient for CH₃C(O)CH₃ was determined to be k_A″ = (4.0 ± 0.2) × 10⁻²⁹ cm⁶ molecule⁻² s⁻¹, and the equilibrium constant for HO₂·CH₃C(O)CH₃ complex formation was found to be K_c(R14) = (2.0 ± 0.89) × 10⁻¹⁸ cm³ molecule⁻¹; from these values, the rate constant for the HO₂ + HO₂·CH₃C(O)CH₃ reaction was estimated to be (2 ± 1) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹. Results from UV absorption cross-section measurements of CH₃C(O)CH₂O₂ and prompt OH radical yields arising from possible oxidation of the CH₃C(O)CH₃-derived alkyl radical are also discussed. Using theoretical methods, no likely pathways for the observed prompt OH radical formation have been found and the prompt OH radical yields thus remain unexplained
Computational Kinetics Study Of Atmospheric Ring-closure And Dehydration Reactions Of 1,4-hydroxycarbonyls In The Gas Phase
Several experimental studies have shown that 1,4-hydroxycarbonyls can undergo sequential reactions involving cyclization followed by dehydration to form dihydrofurans.\footnote{Atkinson, R. et al. Atmos. Environ. 2008, 42, 5859; Ranney, A. P.; Ziemann, P. J. J. Phys. Chem. A 2016, 120, 2561.} As dihydrofurans contain a double bond, they are highly reactive towards OH, O, and NO in the atmosphere. In this work, we investigate the energetics and kinetics of the cyclization and dehydration reaction steps associated with 4-hydroxybutanal (4-OH-BL), a prototypical 1,4-hydroxycarbonyl molecule using ab initio calculations. The cyclization step transforms 4-OH-BL into 2-hydroxytetrahydrofuran (2-OH-THF), which can subsequently undergo dehydration to form 2,3-dihydrofuran. Since the barriers associated with the cyclization and dehydration steps for 4-OH-BL are respectively 34.8 and 63.0 kcal/mol in the absence of any catalyst, both reaction steps are not feasible under atmospheric conditions. However, the presence of a suitable catalyst can significantly reduce the reaction barriers. Therefore, we investigate the effect of a single molecule of HO, HO radical, HC(O)OH, HNO, and HSO as catalysts on the reaction. We find that HSO lowers the reaction barriers the greatest, with the barrier for the cyclization step being reduced to -13.1 kcal/mol and that for the dehydration step going down to 9.2 kcal/mol, below their respective separated starting reactants. Interestingly, our rate calculations shows that HNO provides the fastest rate due the combined effects of larger atmospheric concentration and reduced barrier. Thus, our study suggests that with acid catalysis the cyclization reaction step can readily occur for 1,4-hydroxycarbonyls in the gas phase. The 2-OH-THF products, once formed, likely undergo reaction with OH radicals in the atmosphere because the dehydration step involves a large barrier even with acid catalysis. The reaction pathways and rate constant for this reaction in the presence of molecular oxygen (O) were also investigated using computational chemistry over the 200-300K temperature range. The main products found from the 2-OH-THF + OH/O reactions are succinaldehyde + HO and 2,3-dihydro-2-furanol + HO
Distribution of carbon monoxide-producing neurons in human colon and in Hirschsprung's disease patients
Hirschsprung's disease (HSCR) is characterized by the absence of ganglion cells and impaired relaxation of the gut. Nitric oxide (NO) and, more recently, carbon monoxide (CO) have been identified as inhibitory neurotransmitters causing relaxation. A deficiency in NO has been reported in aganglionic gut; we hypothesized that CO could also be involved in impaired gut motility in HSCR. The aim of the study was to determine the distribution of CO-and NO-producing enzymes in the normal and aganglionic gut. We performed laser capture microdissection, reverse transcription-polymerase chain reaction, and immunohistochemistry on colon biopsies of normal controls (n = 9) and patients with HSCR (n = 10). The mRNA expression of heme oxygenase-2 (HO-2), immunoreactivities of HO-2 and NO synthase, was determined and compared. Results show a high level of expression of HO-2 mRNA localized in the myenteric plexus. Expression of HO-2 mRNA was also detected in the mucosa, submucosa, and muscular layer. Down-regulation of HO-2 mRNA expression was detected in the aganglionic colon. Immunoreactivities of HO-2 and NO synthase were localized mainly to the ganglion plexus and to nerve fibers within the muscle in the control colons and normoganglionic colons. HO-2-containing neurons were more abundant than NO synthase-containing neurons in the myenteric plexus. Nearly all of the NO synthase-containing neurons also contained HO-2. HO-2 and NO synthase were selectively absent in the myenteric and submucosal regions and in the muscle of the aganglionic colon. Our findings suggest involvement of both CO and NO in the pathophysiology of HSCR. Copyright 2002, Elsevier Science (USA). All rights reserved.postprin
Heme Oxygenase Isoforms Differ in Their Subcellular Trafficking during Hypoxia and Are Differentially Modulated by Cytochrome P450 Reductase
Heme oxygenase (HO) degrades heme in concert with NADPH cytochrome P450 reductase (CPR) which donates electrons to the reaction. Earlier studies reveal the importance of the hydrophobic carboxy-terminus of HO-1 for anchorage to the endoplasmic reticulum (ER) which facilitates the interaction with CPR. In addition, HO-1 has been shown to undergo regulated intramembrane proteolysis of the carboxy-terminus during hypoxia and subsequent translocation to the nucleus. Translocated nuclear HO-1 was demonstrated to alter binding of transcription factors and to alter gene expression. Little is known about the homologous membrane anchor of the HO-2 isoform. The current work is the first systematic analysis in a eukaryotic system that demonstrates the crucial role of the membrane anchor of HO-2 for localization at the endoplasmic reticulum, oligomerization and interaction with CPR. We show that although the carboxy-terminal deletion mutant of HO-2 is found in the nucleus, translocation of HO-2 to the nucleus does not occur under conditions of hypoxia. Thus, we demonstrate that proteolytic regulation and nuclear translocation under hypoxic conditions is specific for HO-1. In addition we show for the first time that CPR prevents this translocation and promotes oligomerization of HO-1. Based on these findings, CPR may modulate gene expression via the amount of nuclear HO-1. This is of particular relevance as CPR is a highly polymorphic gene and deficiency syndromes of CPR have been described in humans
- …