17,678 research outputs found
Optimal transfer of an unknown state via a bipartite operation
A fundamental task in quantum information science is to transfer an unknown
state from particle to particle (often in remote space locations) by
using a bipartite quantum operation . We suggest the power of
for quantum state transfer (QST) to be the maximal average
probability of QST over the initial states of particle and the
identifications of the state vectors between and . We find the QST power
of a bipartite quantum operations satisfies four desired properties between two
-dimensional Hilbert spaces. When and are qubits, the analytical
expressions of the QST power is given. In particular, we obtain the exact
results of the QST power for a general two-qubit unitary transformation.Comment: 6 pages, 1 figur
Quantum State Transfer Characterized by Mode Entanglement
We study the quantum state transfer (QST) of a class of tight-bonding Bloch
electron systems with mirror symmetry by considering the mode entanglement.
Some rigorous results are obtained to reveal the intrinsic relationship between
the fidelity of QST and the mirror mode concurrence (MMC), which is defined to
measure the mode entanglement with a certain spatial symmetry and is just the
overlap of a proper wave function with its mirror image. A complementarity is
discovered as the maximum fidelity is accompanied by a minimum of MMC. And at
the instant, which is just half of the characteristic time required to
accomplish a perfect QST, the MMC can reach its maximum value one. A large
class of perfect QST models with a certain spectrum structure are discovered to
support our analytical results.Comment: 6 pages, 3 figures. to appear in PR
Quantum state swapping via qubit network with Hubbard interaction
We study the quantum state transfer (QST) in a class of qubit network with
on-site interaction, which is described by the generalized Hubbard model with
engineered couplings. It is proved that the system of two electrons with
opposite spins in this quantum network of sites can be rigorously reduced
into one dimensional engineered single Bloch electron models with central
potential barrier. With this observation we find that such system can perform a
perfect QST, the quantum swapping between two distant electrons with opposite
spins. Numerical results show such QST and the resonant-tunnelling for the
optimal on-site interaction strengths.Comment: 4 pages, 3 figure
The emergence of classical behavior in magnetic adatoms
A wide class of nanomagnets shows striking quantum behavior, known as quantum
spin tunneling (QST): instead of two degenerate ground states with opposite
magnetizations, a bonding-antibonding pair forms, resulting in a splitting of
the ground state doublet with wave functions linear combination of two
classically opposite magnetic states, leading to the quenching of their
magnetic moment. Here we study how QST is destroyed and classical behavior
emerges in the case of magnetic adatoms, as the strength of their coupling,
either to the substrate or to each other, is increased. Both spin-substrate and
spin-spin coupling renormalize the QST splitting to zero allowing the
environmental decoherence to eliminate superpositions between classical states,
leading to the emergence of spontaneous magnetization.Comment: 5 pages, 4 figure
Recommended from our members
Estimators for QST and coalescence times.
Comparisons of QST to FST can provide insights into the evolutionary processes that lead to differentiation, or lack thereof, among the phenotypes of different groups (e.g., populations, species), and these comparisons have been performed on a variety of taxa, including humans. Here, I show that for neutrally evolving (i.e., by genetic drift, mutation, and gene flow alone) quantitative characters, the two commonly used QST estimators have somewhat different interpretations in terms of coalescence times, particularly when the number of groups that have been sampled is small. A similar situation occurs for FST estimators. Consequently, when observations come from only a small number of groups, which is not an unusual situation, it is important to match estimators appropriately when comparing QST to FST
Effect of exchange interaction on fidelity of quantum state transfer from a photon qubit to an electron-spin qubit
We analyzed the fidelity of the quantum state transfer (QST) from a
photon-polarization qubit to an electron-spin-polarization qubit in a
semiconductor quantum dot, with special attention to the exchange interaction
between the electron and the simultaneously created hole. In order to realize a
high-fidelity QST we had to separate the electron and hole as soon as possible,
since the electron-hole exchange interaction modifies the orientation of the
electron spin. Thus, we propose a double-dot structure to separate the electron
and hole quickly, and show that the fidelity of the QST can reach as high as
0.996 if the resonant tunneling condition is satisfied.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B Rapid
Communication
Recommended from our members
Biporous Metal-Organic Framework with Tunable CO2/CH4 Separation Performance Facilitated by Intrinsic Flexibility.
In this work, we report the synthesis of SION-8, a novel metal-organic framework (MOF) based on Ca(II) and a tetracarboxylate ligand TBAPy4- endowed with two chemically distinct types of pores characterized by their hydrophobic and hydrophilic properties. By altering the activation conditions, we gained access to two bulk materials: the fully activated SION-8F and the partially activated SION-8P with exclusively the hydrophobic pores activated. SION-8P shows high affinity for both CO2 ( Qst = 28.4 kJ/mol) and CH4 ( Qst = 21.4 kJ/mol), while upon full activation, the difference in affinity for CO2 ( Qst = 23.4 kJ/mol) and CH4 ( Qst = 16.0 kJ/mol) is more pronounced. The intrinsic flexibility of both materials results in complex adsorption behavior and greater adsorption of gas molecules than if the materials were rigid. Their CO2/CH4 separation performance was tested in fixed-bed breakthrough experiments using binary gas mixtures of different compositions and rationalized in terms of molecular interactions. SION-8F showed a 40-160% increase (depending on the temperature and the gas mixture composition probed) of the CO2/CH4 dynamic breakthrough selectivity compared to SION-8P, demonstrating the possibility to rationally tune the separation performance of a single MOF by manipulating the stepwise activation made possible by the MOF's biporous nature
- …