309 research outputs found

    On the number of simple arrangements of five double pseudolines

    Get PDF
    We describe an incremental algorithm to enumerate the isomorphism classes of double pseudoline arrangements. The correction of our algorithm is based on the connectedness under mutations of the spaces of one-extensions of double pseudoline arrangements, proved in this paper. Counting results derived from an implementation of our algorithm are also reported.Comment: 24 pages, 16 figures, 6 table

    Multitriangulations, pseudotriangulations and primitive sorting networks

    Get PDF
    We study the set of all pseudoline arrangements with contact points which cover a given support. We define a natural notion of flip between these arrangements and study the graph of these flips. In particular, we provide an enumeration algorithm for arrangements with a given support, based on the properties of certain greedy pseudoline arrangements and on their connection with sorting networks. Both the running time per arrangement and the working space of our algorithm are polynomial. As the motivation for this work, we provide in this paper a new interpretation of both pseudotriangulations and multitriangulations in terms of pseudoline arrangements on specific supports. This interpretation explains their common properties and leads to a natural definition of multipseudotriangulations, which generalizes both. We study elementary properties of multipseudotriangulations and compare them to iterations of pseudotriangulations.Comment: 60 pages, 40 figures; minor corrections and improvements of presentatio

    On the Sylvester-Gallai and the orchard problem for pseudoline arrangements

    Full text link
    We study a non-trivial extreme case of the orchard problem for 1212 pseudolines and we provide a complete classification of pseudoline arrangements having 1919 triple points and 99 double points. We have also classified those that can be realized with straight lines. They include new examples different from the known example of B\"or\"oczky. Since Melchior's inequality also holds for arrangements of pseudolines, we are able to deduce that some combinatorial point-line configurations cannot be realized using pseudolines. In particular, this gives a negative answer to one of Gr\"unbaum's problems. We formulate some open problems which involve our new examples of line arrangements.Comment: 5 figures, 11 pages, to appear in Periodica Mathematica Hungaric

    Cubic Partial Cubes from Simplicial Arrangements

    Full text link
    We show how to construct a cubic partial cube from any simplicial arrangement of lines or pseudolines in the projective plane. As a consequence, we find nine new infinite families of cubic partial cubes as well as many sporadic examples.Comment: 11 pages, 10 figure

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio

    Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity

    Full text link
    We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n^{7/6}). No known input causes our algorithm to use area \Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing, Bordeaux, 201

    Convex-Arc Drawings of Pseudolines

    Get PDF
    A weak pseudoline arrangement is a topological generalization of a line arrangement, consisting of curves topologically equivalent to lines that cross each other at most once. We consider arrangements that are outerplanar---each crossing is incident to an unbounded face---and simple---each crossing point is the crossing of only two curves. We show that these arrangements can be represented by chords of a circle, by convex polygonal chains with only two bends, or by hyperbolic lines. Simple but non-outerplanar arrangements (non-weak) can be represented by convex polygonal chains or convex smooth curves of linear complexity.Comment: 11 pages, 8 figures. A preliminary announcement of these results was made as a poster at the 21st International Symposium on Graph Drawing, Bordeaux, France, September 2013, and published in Lecture Notes in Computer Science 8242, Springer, 2013, pp. 522--52
    corecore