4,843 research outputs found
Understanding ferroelectricity in layered perovskites : new ideas and insights from theory and experiments
N. A. B. was supported by The Welch Foundation under Grant. No. F-1803. J. M. R. acknowledges support from the Penn State Center for Nanoscience, National Science Foundation grant no. DMR-1420620. Ph.G. acknowledges a research Professorship of the Francqui Foundation and financial supports of the ARC project TheMoTherm and FNRS project HiT4FiT.ABO3 perovskites have fascinated solid-state chemists and physicists for decades because they display a seemingly inexhaustible variety of chemical and physical properties. However, despite the diversity of properties found among perovskites, very few of these materials are ferroelectric, or even polar, in bulk. In this Perspective, we highlight recent theoretical and experimental studies that have shown how a combination of non-polar structural distortions, commonly tilts or rotations of the BO6 octahedra, can give rise to polar structures or ferroelectricity in several families of layered perovskites. We discuss the crystal chemical origin of the polarization in each of these families -- which emerges through a so-called `trilinear coupling' or `hybrid improper' mechanism -- and emphasize areas in which further theoretical and experimental investigation is needed. We also consider how this mechanism may provide a generic route for designing not only new ferroelectrics, but also materials with various other multifunctionalities, such as magnetoelectrics and electric field-controllable metal-insulator transitions.Peer reviewe
Crystallography and Chemistry of Perovskites
Despite the simplicity of the original perovskite crystal structure, this
family of compounds shows an enormous variety of structural modifications and
variants. In the following, we will describe several examples of perovskites,
their structural variants and discuss the implications of distortions and
non-stoichiometry on their electronic and magnetic properties.Comment: 11 pages, 8 figures, further information http://www.peter-lemmens.d
Large ferroelectric polarization in the new double perovskite NaLaMnWO induced by non-polar instabilities
Based on density functional theory calculations and group theoretical
analysis, we have studied NaLaMnWO compound which has been recently
synthesized [Phys. Rev. B 79, 224428 (2009)] and belongs to the family of double perovskites. At low temperature, the structure has
monoclinic symmetry, with layered ordering of the Na and La ions and
rocksalt ordering of Mn and W ions. The Mn atoms show an antiferromagnetic
(AFM) collinear spin ordering, and the compound has been reported as a
potential multiferroic. By comparing the low symmetry structure with a parent
phase of symmetry, two distortion modes are found dominant. They
correspond to MnO and WO octahedron \textit{tilt} modes, often
found in many simple perovskites. While in the latter these common tilting
instabilities yield non-polar phases, in NaLaMnWO the additional presence
of the - cation ordering is sufficient to make these rigid unit modes
as a source of the ferroelectricity. Through a trilinear coupling with the two
unstable tilting modes, a significant polar distortion is induced, although the
system has no intrinsic polar instability. The calculated electric polarization
resulting from this polar distortion is as large as 16 . Despite its secondary character, this polarization is coupled with
the dominant tilting modes and its switching is bound to produce the switching
of one of two tilts, enhancing in this way a possible interaction with the
magnetic ordering. The transformation of common non-polar purely steric
instabilities into sources of ferroelectricity through a controlled
modification of the parent structure, as done here by the cation ordering, is a
phenomenon to be further explored.Comment: Physical Chemistry Chemical physics (in press
High-resolution remote thermography using luminescent low-dimensional tin-halide perovskites
While metal-halide perovskites have recently revolutionized research in
optoelectronics through a unique combination of performance and synthetic
simplicity, their low-dimensional counterparts can further expand the field
with hitherto unknown and practically useful optical functionalities. In this
context, we present the strong temperature dependence of the photoluminescence
(PL) lifetime of low-dimensional, perovskite-like tin-halides, and apply this
property to thermal imaging with a high precision of 0.05 {\deg}C. The PL
lifetimes are governed by the heat-assisted de-trapping of self-trapped
excitons, and their values can be varied over several orders of magnitude by
adjusting the temperature (up to 20 ns {\deg}C-1). Typically, this sensitive
range spans up to one hundred centigrade, and it is both compound-specific and
shown to be compositionally and structurally tunable from -100 to 110 {\deg} C
going from [C(NH2)3]2SnBr4 to Cs4SnBr6 and (C4N2H14I)4SnI6. Finally, through
the innovative implementation of cost-effective hardware for fluorescence
lifetime imaging (FLI), based on time-of-flight (ToF) technology, these novel
thermoluminophores have been used to record thermographic videos with high
spatial and thermal resolution.Comment: 25 pages, 4 figure
Origin of ferroelectricity in the multiferroic barium fluorides BaMF4
We present a first principles study of the series of multiferroic barium
fluorides with the composition BaMF4, where M is Mn, Fe, Co, or Ni. We discuss
trends in the structural, electronic, and magnetic properties, and we show that
the ferroelectricity in these systems results from the "freezing in" of a
single unstable polar phonon mode. In contrast to the case of the standard
perovskite ferroelectrics, this structural distortion is not accompanied by
charge transfer between cations and anions. Thus, the ferroelectric instability
in the multiferroic barium fluorides arises solely due to size effects and the
special geometrical constraints of the underlying crystal structure.Comment: 8 pages, 6 figures, 3 table
AgNb7O18 : an ergodic relaxor ferroelectric
AgNb7O18 is an ergodic relaxor ferroelectric at room temperature with an incipient transition to the nonergodic state. Electron diffraction confirms a locally polar symmetry, while X-ray diffraction perceives a nonpolar structure. All ions are repelled away from zones where NbO6 octahedra are edge-sharing
- …