1,358,400 research outputs found

    Biophysical characterization of a protein for structure comparison : methods for identifying insulin structural changes

    Get PDF
    Although protein structure has been studied for many decades it remains the case that we cannot state with confidence whether two samples have the same molecular structure, particularly in solution. The increasing number of biosimilar biopharmaceutical drugs that are being tested means this is not an academic exercise. In this work we consider how four well-established techniques: dynamic light scattering (DLS), circular dichroism (CD), nuclear magnetic resonance spectroscopy (NMR), and molecular modelling can be combined to provide information about the supposedly well-understood protein insulin. A goal of this work was to establish a systematic means of detecting differences between insulin samples as a function of pH, temperature, and the presence or absence of zinc, all of which are known to change the oligomerisation state and to affect molecular structure. We used the recently developed Secondary Structure Neural Network (SSNN) circular dichroism algorithm to facilitate analysis of the CD spectra

    Introduction to Protein Structure Prediction

    Get PDF
    This chapter gives a graceful introduction to problem of protein three- dimensional structure prediction, and focuses on how to make structural sense out of a single input sequence with unknown structure, the 'query' or 'target' sequence. We give an overview of the different classes of modelling techniques, notably template-based and template free. We also discuss the way in which structural predictions are validated within the global com- munity, and elaborate on the extent to which predicted structures may be trusted and used in practice. Finally we discuss whether the concept of a sin- gle fold pertaining to a protein structure is sustainable given recent insights. In short, we conclude that the general protein three-dimensional structure prediction problem remains unsolved, especially if we desire quantitative predictions. However, if a homologous structural template is available in the PDB model or reasonable to high accuracy may be generated

    Protein Structure Prediction Using Basin-Hopping

    Full text link
    Associative memory Hamiltonian structure prediction potentials are not overly rugged, thereby suggesting their landscapes are like those of actual proteins. In the present contribution we show how basin-hopping global optimization can identify low-lying minima for the corresponding mildly frustrated energy landscapes. For small systems the basin-hopping algorithm succeeds in locating both lower minima and conformations closer to the experimental structure than does molecular dynamics with simulated annealing. For large systems the efficiency of basin-hopping decreases for our initial implementation, where the steps consist of random perturbations to the Cartesian coordinates. We implemented umbrella sampling using basin-hopping to further confirm when the global minima are reached. We have also improved the energy surface by employing bioinformatic techniques for reducing the roughness or variance of the energy surface. Finally, the basin-hopping calculations have guided improvements in the excluded volume of the Hamiltonian, producing better structures. These results suggest a novel and transferable optimization scheme for future energy function development

    Protein Structure Prediction: The Next Generation

    Full text link
    Over the last 10-15 years a general understanding of the chemical reaction of protein folding has emerged from statistical mechanics. The lessons learned from protein folding kinetics based on energy landscape ideas have benefited protein structure prediction, in particular the development of coarse grained models. We survey results from blind structure prediction. We explore how second generation prediction energy functions can be developed by introducing information from an ensemble of previously simulated structures. This procedure relies on the assumption of a funnelled energy landscape keeping with the principle of minimal frustration. First generation simulated structures provide an improved input for associative memory energy functions in comparison to the experimental protein structures chosen on the basis of sequence alignment

    Automated Protein Structure Classification: A Survey

    Full text link
    Classification of proteins based on their structure provides a valuable resource for studying protein structure, function and evolutionary relationships. With the rapidly increasing number of known protein structures, manual and semi-automatic classification is becoming ever more difficult and prohibitively slow. Therefore, there is a growing need for automated, accurate and efficient classification methods to generate classification databases or increase the speed and accuracy of semi-automatic techniques. Recognizing this need, several automated classification methods have been developed. In this survey, we overview recent developments in this area. We classify different methods based on their characteristics and compare their methodology, accuracy and efficiency. We then present a few open problems and explain future directions.Comment: 14 pages, Technical Report CSRG-589, University of Toront
    • …
    corecore