129,761 research outputs found

    Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    Get PDF
    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors

    The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells

    Get PDF
    Background: While nanotechnology is advancing rapidly, nanosafety tends to lag behind since general mechanistic insights into cell-nanoparticle (NP) interactions remain rare. To tackle this issue, standardization of nanosafety assessment is imperative. In this regard, we believe that the cell type selection should not be overlooked since the applicability of cell lines could be questioned given their altered phenotype. Hence, we evaluated the impact of the cell type on in vitro nanosafety evaluations in a human and murine neuroblastoma cell line, neural progenitor cell line and in neural stem cells. Acute toxicity was evaluated for gold, silver and iron oxide (IO) NPs, and the latter were additionally subjected to a multiparametric analysis to assess sublethal effects. Results: The stem cells and murine neuroblastoma cell line respectively showed most and least acute cytotoxicity. Using high content imaging, we observed cell type-and species-specific responses to the IONPs on the level of reactive oxygen species production, calcium homeostasis, mitochondrial integrity and cell morphology, indicating that cellular homeostasis is impaired in distinct ways. Conclusions: Our data reveal cell type-specific toxicity profiles and demonstrate that a single cell line or toxicity end point will not provide sufficient information on in vitro nanosafety. We propose to identify a set of standard cell lines for screening purposes and to select cell types for detailed nanosafety studies based on the intended application and/or expected exposure

    Keratin 6a marks mammary bipotential progenitor cells that can give rise to a unique tumor model resembling human normal-like breast cancer.

    Get PDF
    Progenitor cells are considered an important cell of origin of human malignancies. However, there has not been any single gene that can define mammary bipotential progenitor cells, and as such it has not been possible to use genetic methods to introduce oncogenic alterations into these cells in vivo to study tumorigenesis from them. Keratin 6a is expressed in a subset of mammary luminal epithelial cells and body cells of terminal end buds. By generating transgenic mice using the Keratin 6a (K6a) gene promoter to express tumor virus A (tva), which encodes the receptor for avian leukosis virus subgroup A (ALV/A), we provide direct evidence that K6a(+) cells are bipotential progenitor cells, and the first demonstration of a non-basal location for some biopotential progenitor cells. These K6a(+) cells were readily induced to form mammary tumors by intraductal injection of RCAS (an ALV/A-derived vector) carrying the gene encoding the polyoma middle T antigen. Tumors in this K6a-tva line were papillary and resembled the normal breast-like subtype of human breast cancer. This is the first model of this subtype of human tumors and thus may be useful for preclinical testing of targeted therapy for patients with normal-like breast cancer. These observations also provide direct in vivo evidence for the hypothesis that the cell of origin affects mammary tumor phenotypes

    Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response

    Get PDF
    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch froman inflammatory to an anti-inflammatory phenotype.Conversely,mesenchymal progenitors fromthe mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions.We used cell lines with purported opposing immune-regulatory function, a bonemarrow derivedmesenchymal progenitor cell line (D1) and amouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF- production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations.We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases

    cAMP Signaling Enhances HIV-1 Long Terminal Repeat (LTR)-directed Transcription and Viral Replication in Bone Marrow Progenitor Cells.

    Get PDF
    CD34+ hematopoietic progenitor cells have been shown to be susceptible to HIV-1 infection, possibly due to a low-level expression of CXCR4, a coreceptor for HIV-1 entry. Given these observations, we have explored the impact of forskolin on cell surface expression of CXCR4 in a cell line model (TF-1). The elevation of intracellular cyclic adenosine monophosphate (cAMP) by forskolin through adenylyl cyclase (AC) resulted in transcriptional upregulation of CXCR4 with a concomitant increase in replication of the CXCR4-utilizing HIV-1 strain IIIB. Transient expression analyses also demonstrated an increase in CXCR4-, CCR5-, and CXCR4-/CCR5-utilizing HIV-1 (LAI, YU2, and 89.6, respectively) promoter activity. Studies also implicated the protein kinase A (PKA) pathway and the downstream transcription factor CREB-1 in interfacing with cAMP response elements located in the CXCR4 and viral promoter. These observations suggest that the cAMP signaling pathway may serve as a regulator of CXCR4 levels and concomitantly of HIV-1 replication in bone marrow (BM) progenitor cells. © 2017, © The Author(s) 2017

    Mouse aorta-derived mesenchymal progenitor cells contribute to and enhance the immune response of macrophage cells under inflammatory conditions

    Get PDF
    Abstract Introduction: Mesenchymal progenitor cells interact with immune cells and modulate inflammatory responses. The cellular characteristics required for this modulation are under fervent investigation. Upon interaction with macrophage cells, they can contribute to or suppress an inflammatory response. Current studies have focused on mesenchymal progenitors derived from bone marrow, adipose, and placenta. However, the arterial wall contains many mesenchymal progenitor cells, which during vascular disease progression have the potential to interact with macrophage cells. To examine the consequence of vascular-tissue progenitor cell-macrophage cell interactions in an inflammatory environment, we used a recently established mesenchymal progenitor cell line derived from the mouse aorta. Methods: Mouse bone marrow-derived macrophage (MΦ) cells and mouse aorta-derived mesenchymal progenitor (mAo) cells were cultured alone or co-cultured directly and indirectly. Cells were treated with oxidized low-density lipoprotein (ox-LDL) or exposed to the inflammatory mediators lipopolysaccharide (LPS) and interferon-gamma (IFNγ) or both. A Toll-like receptor-4 (TLR4)-deficient macrophage cell line was used to determine the role of the mAo cells. To monitor inflammation, nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFα) secretions were measured. Results: Mesenchymal progenitor cells isolated from aorta and cloned by high proliferative capacity (mAo) can differentiate into multiple mesenchymal lineages and are positive for several commonly used mouse mesenchymal stem cell markers (that is, CD29, CD44, CD105, CD106, and Sca-1) but are negative for CD73 and ecto-5′-nucleotidase. In co-culture with MΦ cells, they increase MΦ oxidized-LDL uptake by 52.2%. In an inflammatory environment, they synergistically and additively contribute to local production of both NO and IL-6. After exposure to ox-LDL, the inflammatory response of MΦ cells to LPS and LPS/IFNγ is muted. However, when lipid-laden MΦ cells are co-cultured with mAo cell progenitors, the muted response is recovered and the contribution by the mAo cell progenitor is dependent upon cell contact. Conclusions: The resident mesenchymal progenitor cell is a potential contributor to vascular inflammation when in contact with inflamed and lipid-laden MΦ cells. This interaction represents an additional target in vascular disease treatment. The potential for resident cells to contribute to the loca

    Metabolomic profiling of human pluripotent stem cell differentiation into lung progenitors.

    Get PDF
    Metabolism is vital to cellular function and tissue homeostasis during human lung development. In utero, embryonic pluripotent stem cells undergo endodermal differentiation toward a lung progenitor cell fate that can be mimicked in vitro using induced human pluripotent stem cells (hiPSCs) to study genetic mutations. To identify differences between wild-type and surfactant protein B (SFTPB)-deficient cell lines during endoderm specification toward lung, we used an untargeted metabolomics approach to evaluate the developmental changes in metabolites. We found that the metabolites most enriched during the differentiation from pluripotent stem cell to lung progenitor cell, regardless of cell line, were sphingomyelins and phosphatidylcholines, two important lipid classes in lung development. The SFTPB mutation had no metabolic impact on early endodermal lung development. The identified metabolite signatures during lung progenitor cell differentiation may be utilized as biomarkers for normal embryonic lung development

    Improved arteriogenesis with simultaneous skeletal muscle repair in ischemic tissue by SCL plus multipotent adult progenitor cell clones from peripheral blood

    Get PDF
    Background: The CD34- murine stem cell line RM26 cloned from peripheral blood mononuclear cells has been shown to generate hematopoietic progeny in lethally irradiated animals. The peripheral blood-derived cell clones expresses a variety of mesodermal and erythroid/myeloid transcription factors suggesting a multipotent differentiation potential like the bone marrow-derived `multipotent adult progenitor cells' (MAP-C). Methods: SCL+ CD34- RM26 cells were transfused intravenously into mice suffering from chronic hind-limb ischemia, evaluating the effect of stem cells on collateral artery growth and simultaneous skeletal muscle repair. Results: RM26 cells are capable of differentiating in vitro into endothelial cells when cultured on the appropriate collagen matrix. Activation of the SCL stem cell enhancer (SCL+) is mediated through the binding to two Ets and one GATA site and cells start to express milieu- and growth condition-dependent levels of the endothelial markers CD31 (PECAM) and Flt-1 (VEGF-R1). Intravenously infused RM26 cells significantly improved the collateral blood flow (arteriogenesis) and neo-angiogenesis formation in a murine hind-limb ischemia transplant model. Although transplanted RM26 cells did not integrate into the growing collateral arteries, cells were found adjacent to local arteriogenesis, but instead integrated into the ischemic skeletal muscle exclusively in the affected limb for simultaneous tissue repair. Conclusion: These data suggest that molecularly primed hem-/mesangioblast-type adult progenitor cells can circulate in the peripheral blood improving perfusion of tissues with chronic ischemia and extending beyond the vascular compartment. Copyright (C) 2004 S. Karger AG, Basel

    Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells.

    Get PDF
    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate
    • …
    corecore