258,320 research outputs found

    Cross-Selectivity in the Catalytic Ketonization of Carboxylic Acids

    Get PDF
    A mixture of acetic and 2-methylpropanoic (isobutyric) acids representing non-branched and branched acids, respectively, was catalytically converted to a mixture of ketones in a set of statistically designed experiments (DOE). The selectivity toward the cross-ketonization product was analyzed depending on (a) temperature within 300–450 °C range, (b) molar fraction of each acid in the mixture, from 10% to 90%, and (c) liquid hourly space velocity (LHSV) within 2–12 h−1, and compared against the selectivity toward two symmetrical ketones. Six metal oxide catalysts were tested and ranked on their ability to yield the cross-product as opposed to the self-condensation product. The catalysts were based on either the anatase form of titania or monoclinic form of zirconia and treated with either KOH or K2HPO4. The titania catalyst treated by KOH outperformed all other catalysts by providing the cross-selectivity above the statistically expected binomial distribution. The criterion for having a high cross-selectivity in the decarboxylative ketonization is formulated mathematically as the separation of roles of two acids, one being a more active enolic component, and the other being the preferred carbonyl component. According to the suggested criterion, the less branched acetic acid reacts as both the preferred carbonyl and enolic component with untreated catalysts. Therefore, untreated catalysts promote selective formation of the symmetrical ketone, acetone, thereby decreasing the selectivity to the cross-ketone. After alkaline treatment, both the anatase form of titania and monoclinic form of zirconia increase the isobutyric acid participation as the carbonyl component. Acetic acid remains as the preferred enolic component with all treated catalysts, thus increasing the selectivity toward the cross-product in the ketonization of a mixture of carboxylic acids. The condition for achieving a high cross-selectivity by polarizing roles of the two reactants can be extended to other types of cross-condensations

    Methyl esters selectivity of transesterification reaction with homogenous alkaline catalyst to produce biodiesel in batch, plug flow, and continuous stirred tank reactors

    Get PDF
    Selectivity concept is essential in establishing the best operating conditions for attaining maximum production of the desired product. For complex reaction such as biodiesel fuel synthesis, kinetic studies of transesterification reaction have revealed the mechanism of the reaction and rate constants. The objectives of this research are to develop the kinetic parameters for determination of methyl esters and glycerol selectivity, evaluate the significance of the reverse reaction in transesterification reaction, and examine the influence of reaction characteristics (reaction temperature, methanol to oil molar ratio, and the amount of catalyst) on selectivity. For this study, published reaction rate constants of transesterification reaction were used to develop mathematical expressions for selectivities. In order to examine the base case and reversible transesterification, two calculation schemes (Case 1 and Case 2) were established. An enhanced selectivity was found in the base case of transesterification reaction. The selectivity was greatly improved at optimum reaction temperature (60 C), molar ratio (9 : 1), catalyst concentration (1.5 wt.%), and low free fatty acid feedstock. Further research might explore the application of selectivity for specifying reactor configurations

    Methyl esters selectivity of transesterification reaction with homogenous alkaline catalyst to produce biodiesel in batch, plug flow, and continuous stirred tank reactors

    Get PDF
    Selectivity concept is essential in establishing the best operating conditions for attaining maximum production of the desired product. For complex reaction such as biodiesel fuel synthesis, kinetic studies of transesterification reaction have revealed the mechanism of the reaction and rate constants. The objectives of this research are to develop the kinetic parameters for determination of methyl esters and glycerol selectivity, evaluate the significance of the reverse reaction in transesterification reaction, and examine the influence of reaction characteristics (reaction temperature, methanol to oil molar ratio, and the amount of catalyst) on selectivity. For this study, published reaction rate constants of transesterification reaction were used to develop mathematical expressions for selectivities. In order to examine the base case and reversible transesterification, two calculation schemes (Case 1 and Case 2) were established. An enhanced selectivity was found in the base case of transesterification reaction. The selectivity was greatly improved at optimum reaction temperature (60 C), molar ratio (9 : 1), catalyst concentration (1.5 wt.%), and low free fatty acid feedstock. Further research might explore the application of selectivity for specifying reactor configurations

    A pendant proton shuttle on [Fe4N(CO)12]- alters product selectivity in formate vs. H2 production via the hydride [H-Fe4N(CO)12].

    Get PDF
    Proton relays are known to increase reaction rates for H2 evolution and lower overpotentials in electrocatalytic reactions. In this report we describe two electrocatalysts, [Fe4N(CO)11(PPh3)]- (1-) which has no proton relay, and hydroxyl-containing [Fe4N(CO)11(Ph2P(CH2)2OH)]- (2-). Solid state structures indicate that these phosphine-substituted clusters are direct analogs of [Fe4N(CO)12]- where one CO ligand has been replaced by a phosphine. We show that the proton relay changes the selectivity of reactions: CO2 is reduced selectively to formate by 1- in the absence of a relay, and protons are reduced to H2 under a CO2 atmosphere by 2-. These results implicate a hydride intermediate in the mechanism of the reactions and demonstrate the importance of controlling proton delivery to control product selectivity. Thermochemical measurements performed using infrared spectroelectrochemistry provided pKa and hydricity values for [HFe4N(CO)11(PPh3)]-, which are 23.7, and 45.5 kcal mol-1, respectively. The pKa of the hydroxyl group in 2- was determined to fall between 29 and 41, and this suggests that the proximity of the proton relay to the active catalytic site plays a significant role in the product selectivity observed, since the acidity alone does not account for the observed results. More generally, this work emphasizes the importance of substrate delivery kinetics in determining the selectivity of CO2 reduction reactions that proceed through metal-hydride intermediates

    A New Framework for Join Product Skew

    Full text link
    Different types of data skew can result in load imbalance in the context of parallel joins under the shared nothing architecture. We study one important type of skew, join product skew (JPS). A static approach based on frequency classes is proposed which takes for granted the data distribution of join attribute values. It comes from the observation that the join selectivity can be expressed as a sum of products of frequencies of the join attribute values. As a consequence, an appropriate assignment of join sub-tasks, that takes into consideration the magnitude of the frequency products can alleviate the join product skew. Motivated by the aforementioned remark, we propose an algorithm, called Handling Join Product Skew (HJPS), to handle join product skew

    Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating 1 to 3 Metals, with Application to CO₂ Reduction Electrocatalysis for the 2 Metal Case

    Get PDF
    Recently, the reduction of CO₂ to fuels has been the subject of numerous studies, but the selectivity and activity remain inadequate. Progress has been made on single-site two-dimensional catalysts based on graphene coupled to a metal and nitrogen for the CO₂ reduction reaction (CO₂RR); however, the product is usually CO, and the metal–N environment remains ambiguous. We report a novel two-dimensional graphene nitrene heterostructure (grafiN₆) providing well-defined active sites (N₆) that can bind one to three metals for the CO₂RR. We find that homobimetallic FeFe–grafiN₆ could reduce CO₂ to CH₄ at −0.61 V and to CH₃CH₂OH at −0.68 V versus reversible hydrogen electrode, with high product selectivity. Moreover, the heteronuclear FeCu–grafiN₆ system may be significantly less affected by hydrogen evolution reaction, while maintaining a low limiting potential (−0.68 V) for C1 and C2 mechanisms. Binding metals to one N₆ site but not the other could promote efficient electron transport facilitating some reaction steps. This framework for single or multiple metal sites might also provide unique catalytic sites for other catalytic processes

    Deviations of Fischer-Tropsch products from an Anderson-Schulz-Flory distribution

    Get PDF
    Negative deviations from an Anderson-Schulz-Flory distribution have been observed for the product of the Fischer-Tropsch synthesis. The catalyst was a complex-derived iron-calcium catalyst promoted with cesium sulphate, therefore, neither carrier acidity nor shape selectivity can explain the deviations. This is the first time that chemical modifications of the catalyst are observed to result in negative ASF deviations

    Complete quantum control of the population transfer branching ratio between two degenerate target states

    Full text link
    A five-level four-pulse phase-sensitive extended stimulated Raman adiabatic passage scheme is proposed to realize complete control of the population transfer branching ratio between two degenerate target states. The control is achieved via a three-node null eigenstate that can be correlated with an arbitrary superposition of the target states. Our results suggest that complete suppression of the yield of one of two degenerate product states, and therefore absolute selectivity in photochemistry, is achievable and predictable, even without studying the properties of the unwanted product state beforehand.Comment: 9 pages, 5 figures, to appear in J. Chem. Phy

    The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations.

    Get PDF
    The effect of host structure on the selectivity and mechanism of intramolecular Prins reactions is evaluated using K12Ga4L6 tetrahedral catalysts. The host structure was varied by modifying the structure of the chelating moieties and the size of the aromatic spacers. While variation in chelator substituents was generally observed to affect changes in rate but not selectivity, changing the host spacer afforded differences in efficiency and product diastereoselectivity. An extremely high number of turnovers (up to 840) was observed. Maximum rate accelerations were measured to be on the order of 105, which numbers among the largest magnitudes of transition state stabilization measured with a synthetic host-catalyst. Host/guest size effects were observed to play an important role in host-mediated enantioselectivity
    corecore