223,563 research outputs found

    PRAS40 suppresses atherogenesis through inhibition of mTORC1-dependent pro-inflammatory signaling in endothelial cells

    Get PDF
    Endothelial pro-inflammatory activation plays a pivotal role in atherosclerosis, and many pro-inflammatory and atherogenic signals converge upon mechanistic target of rapamycin (mTOR). Inhibitors of mTOR complex 1 (mTORC1) reduced atherosclerosis in preclinical studies, but side effects including insulin resistance and dyslipidemia limit their clinical use in this context. Therefore, we investigated PRAS40, a cell type-specific endogenous modulator of mTORC1, as alternative target. Indeed, we previously found PRAS40 gene therapy to improve metabolic profile; however, its function in endothelial cells and its role in atherosclerosis remain unknown. Here we show that PRAS40 negatively regulates endothelial mTORC1 and pro-inflammatory signaling. Knockdown of PRAS40 in endothelial cells promoted TNFα-induced mTORC1 signaling, proliferation, upregulation of inflammatory markers and monocyte recruitment. In contrast, PRAS40-overexpression blocked mTORC1 and all measures of pro-inflammatory signaling. These effects were mimicked by pharmacological mTORC1-inhibition with torin1. In an in vivo model of atherogenic remodeling, mice with induced endothelium-specific PRAS40 deficiency showed enhanced endothelial pro-inflammatory activation as well as increased neointimal hyperplasia and atherosclerotic lesion formation. These data indicate that PRAS40 suppresses atherosclerosis via inhibition of endothelial mTORC1-mediated pro-inflammatory signaling. In conjunction with its favourable effects on metabolic homeostasis, this renders PRAS40 a potential target for the treatment of atherosclerosis

    Regulation of anti-inflammatory gene expression in vascular endothelial cells by EPAC1

    Get PDF
    Suppressor of cytokine signalling 3 (SOCS3) is a potent inhibitor of pro-inflammatory pathways involved in atherogenesis and the development of neo-intimal hyperplasia (NIH), which contributes to the in-stent re-stenosis responsible for the failure of percutaneous coronary intervention (PCI) procedures. We have shown that cyclic AMP sensor EPAC1 triggers induction of the SOCS3 gene in vascular endothelial cells (VECs), thereby attenuating interleukin 6 (IL-6)-mediated pro-inflammatory signalling. We propose that EPAC1 localisation to the nuclear pore controls cyclic AMP-mediated activation of a C/EBPβ/c-Jun transcriptional complex, leading to SOCS3 induction and suppression of pro-inflammatory signalling. Future work in this area will involve an integrated approach to determine the wider significance of the EPAC1-C/EBPβ/c-Jun pathway in controlling human VEC function and identify new therapeutic targets for management of chronic inflammation in vascular settings

    PCSK9 induces a pro-inflammatory response in macrophages

    Get PDF
    Intraplaque release of inflammatory cytokines from macrophages is implicated in atherogenesis by inducing the proliferation and migration of media smooth muscle cells (SMCs). PCSK9 is present and released by SMCs within the atherosclerotic plaque but its function is still unknown. In the present study, we tested the hypothesis that PCSK9 could elicit a pro-inflammatory effect on macrophages. THP-1-derived macrophages and human primary macrophages were exposed to different concentrations (0.250\u2009\uf7\u20092.5\u2009\ub5g/ml) of human recombinant PCSK9 (hPCSK9). After 24\u2009h incubation with 2.5\u2009\ub5g/ml PCSK9, a significant induction of IL-1\u3b2, IL-6, TNF-\u3b1, CXCL2, and MCP1 mRNA, were observed in both cell types. Co-culture of THP-1 macrophages with HepG2 overexpressing hPCSK9 also showed the induction of TNF-\u3b1 (2.4\u2009\ub1\u20090.5 fold) and IL-1\u3b2 (8.6\u2009\ub1\u20091.8 fold) mRNA in macrophages. The effect of hPCSK9 on TNF-\u3b1 mRNA in murine LDLR-/- bone marrow macrophages (BMM) was significantly impaired as compared to wild-type BMM (4.3\u2009\ub1\u20091.6 fold vs 31.1\u2009\ub1\u20096.1 fold for LDLR-/- and LDLR+/+, respectively). Finally, a positive correlation between PCSK9 and TNF-\u3b1 plasma levels of healthy adult subjects (males 533, females 537) was observed (B\u2009=\u20098.73, 95%CI 7.54\u2009\uf7\u20099.93, p\u2009<\u20090.001). Taken together, the present study provides evidence of a pro-inflammatory action of PCSK9 on macrophages, mainly dependent by the LDLR

    Exposure to polybrominated diphenyl ethers (PBDEs) suppresses the release of pro-inflammatory products by alveolar macrophages in vitro

    Get PDF
    Endocrine disrupting chemicals have adverse effects on immune function that may result in respiratory conditions. Inhalation of dust is a major route of exposure to PBDEs; however, the impact of PBDEs on the immune response is unclear. The objective of this in vitro study was to determine the impact of PBDEs on the release of pro-inflammatory cytokines by activated alveolar macrophages. Porcine alveolar macrophages were grown in RPMI growth media supplemented with 10% porcine serum and incubated for 24-hours. After 24-hours, cells were activated by inoculation with PMA. In addition to PMA, different concentrations of the PBDE mixture DE-71 were introduced to the wells. After 6-hour incubation, conditioned media was removed and analyzed. Cells exposed to PMA and PBDEs released significantly less pro-inflammatory cytokines compared to controls. Suppression of pro-inflammatory cytokines---characteristic of a compromised immune system---suggests that persistent exposure to PBDEs may increase the susceptibility to respiratory conditions

    Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells.

    Get PDF
    Endothelial cells (ECs) are critical determinants of vascular homeostasis and inflammation, but transcriptional mechanisms specifying their identities and functional states remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling inference of transcription factor networks that direct homeostatic and pro-inflammatory programs. We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA transcription factors play key roles in HAEC transcription by co-binding enhancers associated with EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and associate with coordinated binding of CEBPD, IRF1, and NFκB. Collectively, these findings identify cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and their specific responses to pro-inflammatory stimuli

    Pro-inflammatory genetic markers of atherosclerosis

    Get PDF
    Atherosclerosis (AS) is a chronic, progressive, multifactorial disease mostly affecting large and medium-sized elastic and muscular arteries. It has formerly been considered a bland lipid storage disease. Currently, multiple independent pathways of evidence suggest this pathological condition is a peculiar form of inflammation, triggered by cholesterol-rich lipoproteins and influenced both by environmental and genetic factors. The Human Genome Project opened up the opportunity to dissect complex human traits and to understand basic pathways of multifactorial diseases such as AS. Population-based association studies have emerged as powerful tools for examining genes with a role in common multifactorial diseases that have a strong environmental component. These association studies often estimate the risk of developing a certain disease in carriers and non-carriers of a particular genetic polymorphism. Dissecting out the influence of pro-inflammatory genes within the complex pathophysiology of AS and its complications will help to provide a more complete risk assessment and complement known classical cardiovascular risk factors. The detection of a risk profile will potentially allow both the early identification of individuals susceptible to disease and the possible discovery of potential targets for drug or lifestyle modification; i.e. it will open the door to personalized medicine

    Paroxetine is Pro-inflammatory in Human Brain Microvascular Endothelial Cells

    Get PDF
    BACKGROUND: Paroxetine is an antidepressant that is widely used. However, Paroxetine possesses anticholinergic properties which may contribute to cognitive decline in older adults. Surprisingly, the mechanisms of the cognitive decline of anticholinergic drugs in older adults remains elusive. A hypothesis is that a loss of cholinergic signaling is pro-inflammatory in the brain. We designed experiments to determine if Paroxetine is pro-inflammatory in Normal Human Brain Microvascular Endothelial Cells (NHBMECs). METHOD: NHBMECs were grown at 5% CO2, 37C and 95% relative humidity until 90% confluent. NHBMECs were treated with the RNA free water as control, Paroxetine as 1.67x 10 4 mM/mol, IL1B 2ng/ml for 24 hours. RNA was isolated, converted into CDNA, and gene expression determined via RT-PCR. Statistical analysis was performed via ANOVA and post-hoc Tukey’s with a significant p-value \u3c 0.05. Experiments were completed on 10-04-19. The mRNA expression studies were performed on 11-01-19. RESULTS: NHBMECs exposed to Paroxetine for 24 hours demonstrated elevated expression of CCL2 and CXCL5. NHBMECs exposed to Paroxetine + IL1B demonstrated synergistic elevations in CCL2 and CXCL5. CONCLUSION: Our result suggests that Paroxetine may have pro-inflammatory properties within this subset of human brain cells. Therefore, our preliminary data suggests the possibility of pathological pro- inflammatory mechanisms associated with Paroxetine. Further evaluation of different populations of normal human brain cells are warranted.https://scholarscompass.vcu.edu/gradposters/1096/thumbnail.jp

    Fetal skin as a pro-inflammatory organ: Evidence from a primate model of chorioamnionitis.

    Get PDF
    BackgroundIntrauterine infection is a primary cause of preterm birth and fetal injury. The pro-inflammatory role of the fetal skin in the setting of intrauterine infection remains poorly characterized. Whether or not inflammation of the fetal skin occurs in primates remains unstudied. Accordingly, we hypothesized that: i) the fetal primate skin would mount a pro-inflammatory response to preterm birth associated pro-inflammatory agents (lipopolysaccharides from Escherichia coli, live Ureaplasma parvum, interleukin-1β) and; ii) that inhibiting interleukin-1 signaling would decrease the skin inflammatory response.MethodsRhesus macaques with singleton pregnancies received intraamniotic injections of either sterile saline (control) or one of three pro-inflammatory agonists: E. coli lipopolysaccharides, interluekin-1β or live U. parvum under ultrasound guidance. A fourth group of animals received both E. coli lipopolysaccharide and interleukin-1 signaling inhibitor interleukin-1 receptor antagonist (Anakinra) prior to delivery. Animals were surgically delivered at approximately 130 days' gestational age.ResultsIntraamniotic lipopolysaccharide caused an inflammatory skin response characterized by increases in interluekin-1β,-6 and -8 mRNA at 16 hours. There was a modest inflammatory response to U. parvum, but interleukin-1β alone caused no inflammatory response in the fetal skin. Intraamniotic Anakinra treatment of lipopolysaccharide-exposed animals significantly reduced skin inflammation.ConclusionsIntraamniotic lipopolysaccharide and U. parvum were associated with modest increases in the expression of inflammatory mediators in primate fetal skin. Although administration of Interleukin-1β alone did not elicit an inflammatory response, lipopolysaccharide-driven skin inflammation was decreased following intraamniotic Anakinra therapy. These findings provide support for the role of the fetal skin in the development of the fetal inflammatory response

    Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation

    Get PDF
    AMPK (AMP-activated protein kinase) is a key regulator of cellular and whole-body energy balance. AMPK phosphorylates and regulates many proteins concerned with nutrient metabolism, largely acting to suppress anabolic ATP-consuming pathways while stimulating catabolic ATP-generating pathways. This has led to considerable interest in AMPK as a therapeutic target for the metabolic dysfunction observed in obesity and insulin resistance. The role of AMPK in skeletal muscle and the liver has been extensively studied, such that AMPK has been demonstrated to inhibit synthesis of fatty acids, cholesterol and isoprenoids, hepatic gluconeogenesis and translation while increasing fatty acid oxidation, muscle glucose transport, mitochondrial biogenesis and caloric intake. The role of AMPK in the other principal metabolic and insulin-sensitive tissue, adipose, remains poorly characterized in comparison, yet increasing evidence supports an important role for AMPK in adipose tissue function. Obesity is characterized by hypertrophy of adipocytes and the development of a chronic sub-clinical pro-inflammatory environment in adipose tissue, leading to increased infiltration of immune cells. This combination of dysfunctional hypertrophic adipocytes and a pro-inflammatory environment contributes to insulin resistance and the development of Type 2 diabetes. Exciting recent studies indicate that AMPK may not only influence metabolism in adipocytes, but also act to suppress this pro-inflammatory environment, such that targeting AMPK in adipose tissue may be desirable to normalize adipose dysfunction and inflammation. In the present review, we discuss the role of AMPK in adipose tissue, focussing on the regulation of carbohydrate and lipid metabolism, adipogenesis and pro-inflammatory pathways in physiological and pathophysiological conditions
    corecore