75,591 research outputs found

    Livestock IoT: precision livestock management in agribusiness.

    Get PDF
    This paper introduces Livestock IoT (LIoT), a Software Ecosystem (SECO) tailored for precision livestock management within the broader Internet of Things (IoT) concept in agribusiness. In response to the challenges posed by the Fourth Industrial Revolution and the need for enhanced productivity in global food production, the paper highlights the transformative emergence of IoT in elevating precision agribusiness. LIoT is designed to capture, store, and interpret data, providing an integrated platform for intelligent decision-making in animal treatment and automated events. The SECO is structured into five layers, including data streaming, processing, integration, external sources, and visualization, offering a holistic view of information related to confined livestock farming. The paper presents an initial evaluation of the SECO LIoT platform, demonstrating its efficacy in handling compost barn data and supporting decision-making in agriculture. Future work is outlined to optimize the architecture, explore novel applications, and enhance its capacity for supporting emerging technologies in precision livestock contexts.SERP4IoT 2024

    ASAS–NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and Challenges of Confned and Extensive Precision Livestock Production

    Get PDF
    Modern animal scientists, industry, and managers have never faced a more complex world. Precision livestock technologies have altered management in confned operations to meet production, environmental, and consumer goals. Applications of precision technologies have been limited in extensive systems such as rangelands due to lack of infrastructure, electrical power, communication, and durability. However, advancements in technology have helped to overcome many of these challenges. Investment in precision technologies is growing within the livestock sector, requiring the need to assess opportunities and challenges associated with implementation to enhance livestock production systems. In this review, precision livestock farming and digital livestock farming are explained in the context of a logical and iterative fve-step process to successfully integrate precision livestock measurement and management tools, emphasizing the need for precision system models (PSMs). This fve-step process acts as a guide to realize anticipated benefts from precision technologies and avoid unintended consequences. Consequently, the synthesis of precision livestock and modeling examples and key case studies help highlight past challenges and current opportunities within confned and extensive systems. Successfully developing PSM requires appropriate model(s) selection that aligns with desired management goals and precision technology capabilities. Therefore, it is imperative to consider the entire system to ensure that precision technology integration achieves desired goals while remaining economically and managerially sustainable. Achieving long-term success using precision technology requires the next generation of animal scientists to obtain additional skills to keep up with the rapid pace of technology innovation. Building workforce capacity and synergistic relationships between research, industry, and managers will be critical. As the process of precision technology adoption continues in more challenging and harsh, extensive systems, it is likely that confned operations will beneft from required advances in precision technology and PSMs, ultimately strengthening the benefts from precision technology to achieve short- and long-term goals

    Precision Feeding in Dairy Ration Cost Minimization Under Producer's Risk Management

    Get PDF
    The biophysical simulation data from Cornell Net Carbohydrate and Protein System were used in non-linear programming model for least cost ration incorporating ingredient nutrient and price variations. Precision feeding practice indicated to have lower mean cost ration than whole herd feeding in terms of ration cost.Non-linear programming, nutrient variation, price variation, precision feeding, environmental pollution, phosphorus, nitrogen, mean cost ration, whole herd feeding, Livestock Production/Industries, Risk and Uncertainty,

    Adoption and Abandonment of Precision Soil Sampling in Cotton Production

    Get PDF
    Technology adoption in precision agriculture has received considerable attention, while abandonment has received little. Our objective was to identify factors motivating adoption and abandonment of precision soil sampling in cotton. Results indicate younger producers who farmed more cotton area, owned more of their cropland, planted more non-cotton area, used a computer, or used a Personal Digital Assistant (PDA) were more likely to adopt precision soil sampling. Those with more cotton area or who owned livestock were more likely to abandon, while those who used precision soil sampling longer, used a PDA, or used variable-rate fertilizer application were less likely to abandon.Crop Production/Industries,

    Precision livestock farming towards broiler welfare

    Get PDF
    Due to intensification of the livestock system the ratio between number of broilers and number of farmers have been increasing, making impossible the individualized attention to animals without the use of appropriate tools. Increasingly societal concern on broiler welfare requires farmers to find means to improve animal welfare level. Precision livestock farming (PLF) emerges as a possible solution as it enables the monitoring of animals and its environment 24/7. The present study aims to provide information on how PLF technologies can address broiler welfare and to evaluate reasons for their adoption (or non-adoption) by farmers. The results discussions and analysis are based in the three main pillars that guide the present research: animal welfare, PLF technologies and innovation adoption. Methodologically, the study consists of two different steps. Initially, a systematic review of the literature was carried out to identify which are the PLF technologies related to broiler welfare and to assess how they address birds ́ welfare. Results indicate that most PLF technologies are related to image analysis and mainly focused on broiler health improvements. In the second stage, an empirical research was carried out with broiler farmers in the Southern Brazil. From this survey, information on broiler farmers ́ opinions towards broiler welfare and PLF potentialities were assessed as well as on the determinants and limiting factors for technologies adoption. In general, Brazilian broiler farmers attribute great importance to broiler welfare and perceive the current level of welfare as high; however higher scores for importance than for perception indicate that there is room for welfare improvements. In broiler farmers ́ opinions, providing animals food/water and good housing and health conditions are more important than provide means for the animals to express their natural behaviors. Broiler farmers believe that technologies can help them on welfare improvements and are willing to adopt them even when no extra income come from this. Broiler farmers with less experience, producing chicken grillers, having other farm activity besides broiler production and presenting high beliefs on PLF potentialities regarding animal welfare improvements are more likely to adopt PLF technologies. Major limiting factors for PLF technologies adoption are regarding technology high prices, maintenance requirements and to possible financial consequences with technical problems. It is expected the present thesis to be useful to clarify about PLF technologies opportunities in the broiler farmers point of view and that the results obtained to be valuable to increase PLF adoption, which can potentially improve animal and farmers welfare alike.A intensificação do sistema produtivo aumentou a relação entre o número de frangos de corte e o número de trabalhadores rurais, impossibilitando a atenção individualizada aos animais sem o uso de ferramentas adequadas. Em paralelo, a sociedade pressiona os produtores a encontrarem meios para aumentar o nível bem-estar animal (BEA). Tecnologias da zootecnia de precisão (ZP)surgem como possívelsolução, pois possibilitam o monitoramento dos animais e de seu ambiente de forma contínua. O presente estudo objetiva fornecer informações sobre como as tecnologias da ZP abordam o bem-estar de frangos de corte e avaliar os fatores que influenciam a sua adoção pelos produtores. A discussão e a análise dos resultados baseiam-se em três pilares, a saber: BEA, tecnologias da ZP e adoção de inovações. Metodologicamente, o estudo é composto por duas etapas distintas. Inicialmente, uma revisão sistemática da literatura foi realizada para identificar quais são as tecnologias da ZP relacionadas ao bem-estar de frangos de corte e para avaliar como elas abordam o bem-estar das aves. Os resultados indicam que a maioria das tecnologias está relacionada à análise de imagens e principalmente focada na melhoria da saúde dos frangos. Na segunda etapa, foi realizada uma pesquisa empírica com produtores de frangos de corte no Sul do Brasil. A partir desta pesquisa, foram avaliadas informações sobre as opiniões dos criadores de frangos de corte em relação ao BEA e às potencialidades das tecnologias, bem como sobre os fatores determinantes e limitantes para adoção de tecnologias. Em geral, os avicultores brasileiros atribuem grande importância ao bem-estar dos frangos e consideram alto o nível atual de BEA; no entanto, maiores escores para importância do que para percepção indicam que há espaço para melhorias. Na opinião dos produtores, fornecer aos animais comida/água e boas condições de alojamento e saúde é mais importante do que fornecer meios para que os animais expressem seus comportamentos naturais. Os produtores acreditam que as tecnologias podem ajudá-los a aumentar o BEA e estão dispostos a adotá-las mesmo que isso não resulte em maior renda. Produtores com menos experiência, que produzem grillers, que possuem mais de uma atividade agropecuária e que acreditam nas potencialidades das tecnologias em melhorar o BEA são mais propensos a adotar tecnologias. Os principais fatores limitantes para a adoção de tecnologias são os preços elevados, as exigências de manutenção e as possíveis consequências financeiras com problemas técnicos. Espera-se que a presente tese seja útil para esclarecer sobre as oportunidades da ZP do ponto de vista dos produtores e que os resultados obtidos sejam valiosos para aumentar a adoção de tecnologias, as quais podem melhorar o BEA e o bem-estar dos produtores

    New tools for precision livestock management

    Get PDF

    An Integrated Precision Production and Environmental Management Analysis of a Kentucky Dairy Farm

    Get PDF
    This study compares and contrasts the profitability of different dairy management practices through precision livestock farming. Feed analysis and crop yields were simulated. The proposed alternative feeding program demonstrated less manure and nutrient excretions. When mathematical programming model was employed, uniform rate application manifested the highest selected economic values.Management practices, environmental, Environmental Economics and Policy,

    Putting precision livestock research to work in extensive livestock production systems

    Get PDF
    Since the relatively recent appearance in precision agriculture circles (as opposed to the domain of livestock R&D) of precision livestock management (PLM), this new form of PA has come a long way. In extensive farming systems, where the geographical conditions are challenging (large spatial scale and often considerable environmental heterogeneity), there are fewer precision livestock technologies at work than compared to, say, intensive livestock production systems. However the time lapse between R&D and operational use appears to be significantly shorter. R&D first reported only a few years ago is appearing in operational form owing largely to the proliferation of existing OEM devices or systems that can be easily repurposed by producers to put the R&D outcomes to work. In the context of extensive operations, to date, precision livestock R&D has tended to focus on two areas, independent of one another; namely feed base monitoring/management tools, and animal monitoring/management tools. Only recently are we seeing practical attempts to bring the two together

    Haalbaarheid precisielandbouw voor de melkveehouderij

    Get PDF
    Focus on the concepts of Precision Agriculture and Precision Livestock Farming and their potential contribution to the 'innovation agenda' of the Dutch dairy sector. A few initiatives are introduced
    corecore