465,099 research outputs found
Potential problems relative to TDRS/IUS tilt table elevation with failed VRCS
Operational concerns and preliminary solution alternatives related to elevating the inertial upper stage/tracking and data relay satellite (IUS/TDRS) with a failed orbiter vernier reaction control system (VRCS) are presented. Problems arise from the combination of TDRS thermal constraints and tilt table constraints (the primary reaction control system (PRCS) cannot be used to hold attitude while the tilt table is being elevated), and the problems are compounded by the minimum PRCS attitude deadband. The potential solution options are affected by the launch window, flight profile, crew procedures, vehicle capability and constraints, and flight rules
Alpha-induced cross sections of 106Cd for the astrophysical p-process
The 106Cd(alpha,gamma)110Sn reaction cross section has been measured in the
energy range of the Gamow window for the astrophysical p-process scenario. The
cross sections for 106Cd(alpha,n)109Sn and for 106Cd(alpha,p)109In below the
(alpha,n) threshold have also been determined. The results are compared with
predictions of the statistical model code NON-SMOKER using different input
parameters. The comparison shows that a discrepancy for 106Cd(alpha,gamma)110Sn
when using the standard optical potentials can be removed with a different
alpha+106Cd potential. Some astrophysical implications are discussed.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev
70Ge(p,gamma)71As and 76Ge(p,n)76As cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies
The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have
been measured with the activation method in the Gamow window for the
astrophysical p process. The experiments were carried out at the Van de Graaff
and cyclotron accelerators of ATOMKI. The cross sections have been derived by
measuring the decay gamma-radiation of the reaction products. The results are
compared to the predictions of Hauser-Feshbach statistical model calculations
using the code NON-SMOKER. Good agreement between theoretical and experimental
S factors is found. Based on the new data, modifications of the optical
potential used for low-energy protons are discussed.Comment: Accepted for publication in Phys. Rev.
Electrochemical lithium intercalation in nanosized manganese oxides
X-ray amorphous manganese oxides were prepared by reduction of sodium
permanganate by lithium iodide in aqueous medium (MnOx-I) and by decomposition
of manganese carbonate at moderate temperature (MnOx-C). TEM showed that these
materials are not amorphous, but nanostructured, with a prominent spinel
substructure in MnOx-C. These materials intercalate lithium with capacities up
to 200 mAh/g at first cycle (potential window 1.8-4.3 V) and 175 mAh/g at 100th
cycle. Best performances for MnOx-C are obtained with cobalt doping. Potential
electrochemical spectroscopy shows that the initial discharge induces a 2-phase
transformation in MnOx-C phases, but not in MnOx-I ones. EXAFS and XANES
confirm the participation of manganese in the redox process, with variations in
local structure much smaller than in known long-range crystallized manganese
oxides. X-ray absorption spectroscopy also shows that cobalt in MnOx-C is
divalent and does not participate in the electrochemical reaction
Ganoderic acid Bâs influence towards the therapeutic window of trifluoperazine (TFP)
Background: Ganoderic acid B is an important bioactive ingredient isolated from Ganoderma lucidum, and exhibits various pharmacological activities.Aims: To investigate the influence of Ganoderic acid B towards the therapeutic window of trifluoperazine (TFP).Methods: In vitro human liver microsomes (HLMs) incubation system was used to determine the inhibition of Ganoderic acid B towards the glucuronidation of trifluoperazine (TFP).Results: Ganoderic acid B exerted concentration-dependent inhibition towards the glucuronidation of TFP. Furthermore, Dixon plot was used to determine the inhibition type. The intersection point was located in the second quadrant in Dixon plot, indicating the competitive inhibition of Ganoderic acid B towards TFP glucuronidation. Through fitting the data using competitive nonlinear fitting equation, the inhibition kinetic parameter was calculated to be 56.7 uM.Conclusion: All this data indicated the potential influence of Ganoderic acid B-containing herbs towards therapeutic window of TFP. Given that the glucuronidation reaction of TFP is the probe reaction of UGT1A4, the data obtained from the present study also indicated the potential influence of Ganoderic acid-containing herbs towards the therapeutic window of drugs mainly undergoing UGT1A4-mediated metabolism.Keywords: Ganoderic acid B, trifluoperazine (TFP), UDP-glucuronosyltransferase (UGT) 1A
Electrochemical study of the Eu(III)/Eu(II) system in molten fluoride media
The electrochemical behaviour of the Eu(III)/Eu(II) system was examined in the molten eutectic LiF-CaF2 on a molybdenum electrode, using cyclic voltammetry, square-wave voltammetry and chronopotentiometry. It was observed that EuF3 is partly reduced into EuF2 at the operating temperatures (1073-1143 K). The electrochemical study allowed to calculate both the equilibrium constant and the formal standard potential of the Eu(III)/Eu(II) system. The reaction is limited by the diffusion of the species in the solution; their diffusion coefficients were calculated at different temperatures and the values obey Arrhenius' law. The second system Eu(II)/Eu takes place out of the electrochemical window on an inert molybdenum electrode, which inhibits the extraction of Eu species from the salt on such a substrate
Self-supported polypyrrole/polyvinylsulfate films: electrochemical synthesis, characterization, and sensing properties of their redox reactions
Thick films of polypyrrole/polyvinylsulfate (PPy/PVS) blends were electrogenerated on stainlessâsteel electrodes under potentiostatic conditions from aqueous solution. The best electropolymerization potential window was determined by cyclic voltammetry. After removing the film from the back metal, selfâsupported electrodes were obtained. Voltammetric, coulovoltammetric, and chronoamperometric responses from a LiClO4 aqueous solution indicated the formation of an energetically stable structure beyond a reduction threshold of the material. Its subsequent oxidation required higher anodic voltammetric overpotentials or longer chronoamperometric oxidation times. This structure was attributed to the formation of lamellar or vacuolar structures. Xâray photoelectron spectroscopy analysis of the films under different oxidations states revealed that the electrochemical reactions drive the reversible exchange of cations between the film and the electrolyte. The electrical energy and the charge consumed by the reversible reaction of the film under voltammetric conditions between the constant potential limits are a function of the potential scan rate, that is, they sense the working electrochemical conditions.This project was supported by the MarieâSklodowskaâCurie Innovative Training Network MICACTâH2020âMSCAâITNâ2014 and by the SĂ©neca Foundation project 19253/PI/14
Pushing indium phosphide quantum dot emission deeper into the near infrared
Cadmium-free near infrared (NIR) emitting quantum dots (QDs) have significant potential for multiplexed tissue-depth imaging applications in the first optical tissue window (i.e., 650 â 900 nm). Indium phosphide (InP) chemistry provides one of the more promising cadmium-free options for biomedical imaging, but the full tunability of this material has not yet been achieved. Specifically, InP QD emission has been tuned from 480 â 730 nm in previous literature reports, but examples of samples emitting from 730 nm to the InP bulk bandgap limit of 925 nm are lacking. We hypothesize that by generating inverted structures comprising ZnSe/InP/ZnS in a core/shell/shell heterostructure, optical emission from the InP shell can be tuned by changing the InP shell thickness, including pushing deeper into the NIR than current InP QDs. Colloidal synthesis methods including hot injection precipitation of the ZnSe core and a modified successive ion layer adsorption and reaction (SILAR) method for stepwise shell deposition were used to promote growth of core/shell/shell materials with varying thicknesses of the InP shell. By controlling the number of injections of indium and phosphorous precursor material, the emission peak was tuned from 515 nm to 845 nm (2.41 â 1.47 eV) with consistent full width half maximum (FWHM) values of the emission peak ~0.32 eV. To confer water solubility, the nanoparticles were encapsulated in PEGylated phospholipid micelles, and multiplexing of NIR-emitting InP QDs was demonstrated using an IVIS imaging system. These materials show potential for multiplexed imaging of targeted QD contrast agents in the first optical tissue window
Investigation of alpha-induced reactions on 130Ba and 132Ba and their importance for the synthesis of heavy p nuclei
Captures of alpha particles on the proton-richest Barium isotope, 130Ba, have
been studied in order to provide cross section data for the modeling of the
astrophysical gamma process. The cross sections of the 130Ba(alpha,gamma)134Ce
and 130Ba(alpha,n)133Ce reactions have been measured with the activation
technique in the center-of mass energy range between 11.6 and 16 MeV, close
above the astrophysically relevant energies. As a side result, the cross
section of the 132Ba(alpha,n)135Ce reaction has also been measured. The results
are compared with the prediction of statistical model calculations, using
different input parameters such as alpha+nucleus optical potentials. It is
found that the (alpha,n) data can be reproduced employing the standard
alpha+nucleus optical potential widely used in astrophysical applications.
Assuming its validity also in the astrophysically relevant energy window, we
present new stellar reaction rates for 130Ba(alpha,gamma)134Ce and
132Ba(alpha,gamma)136Ce and their inverse reactions calculated with the SMARAGD
statistical model code. The highly increased 136Ce(gamma,alpha)132Ba rate
implies that the p nucleus 130Ba cannot directly receive contributions from the
Ce isotopic chain. Further measurements are required to better constrain this
result.Comment: Accepted for publication in Phys. Rev.
- âŠ