124,223 research outputs found
Novel critical point drying (CPD) based preparation and transmission electron microscopy (TEM) imaging of protein specific molecularly imprinted polymers (HydroMIPs)
We report the transmission electron microscopy (TEM) imaging of a hydrogel-based molecularly imprinted polymer (HydroMIP) specific to the template molecule bovine haemoglobin (BHb). A novel critical point drying based sample preparation technique was employed to prepare the molecularly imprinted polymer (MIP) samples in a manner that would facilitate the use of TEM to image the imprinted cavities, and provide an appropriate degree of both magnification and resolution to image polymer architecture in the <10 nm range. For the first time, polymer structure has been detailed that clearly displays molecularly imprinted cavities, ranging from 5-50 nm in size, that correlate (in terms of size) with the protein molecule employed as the imprinting template. The modified critical point drying sample preparation technique used may potentially play a key role in the imaging of all molecularly imprinted polymers, particularly those prepared in the aqueous phase
Molecular and electronic structure investigation of encapsulated polytiophenes
Insulated molecular wires (IMWs) are expected to be applied to various optoelectronic applications due to their unique photophysical, electronic, and mechanical properties which originate from the absence of -stacking.[1] Kazunori et al have succeeded in the synthesis of a self-threading polythiophene with a polyrotaxane-like 3D architecture (PSTB, see Figure 1a), for which an intrawire hole mobility of 0.9 cm2 Vâ1 sâ1 has been measured.[2] In this study we aim to evaluate for the first time the extension of the -conjugation in encapsulated polythiophenes. A comparison between the experimental Raman spectra of the self-threading PSTB polymer with their correspondent oligomers (i.e. 2STB-5STB) suggests that the effective conjugation length in the polymer is longer than five monomer units. Whether the effective conjugation length of the polymer is better described by using the long oligomer extrapolation approach or periodic DFT calculations of the polymer is discussed in detailed by exploiting the very recent potentialities of state-of-the-art quantum chemical simulations of vibrational properties for crystalline solids.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tec
Recommended from our members
Block co-polyMOFs: morphology control of polymer-MOF hybrid materials.
The hybridization of block copolymers and metal-organic frameworks (MOFs) to create novel materials (block co-polyMOFs, BCPMOFs) with controlled morphologies is reported. In this study, block copolymers containing poly(1,4-benzenedicarboxylic acid, H2bdc) and morphology directing poly(ethylene glycol) (PEG) or poly(cyclooctadiene) (poly(COD)) blocks were synthesized for the preparation of BCPMOFs. Block copolymer architecture and weight fractions were found to have a significant impact on the resulting morphology, mediated through the assembly of polymer precursors prior to MOF formation, as determined through dynamic light scattering. Simple modification of block copolymer weight fraction allowed for tuning of particle size and morphology with either faceted and spherical features. Modification of polymer block architecture represents a simple and powerful method to direct morphology in highly crystalline polyMOF materials. Furthermore, the BCPMOFs could be prepared from both Zr4+ and Zn2+ MOFs, yielding hybrid materials with appreciable surface areas and tuneable porosities. The resulting Zn2+ BCPMOF yielded materials with very narrow size distributions and uniform cubic morphologies. The use of topology in BCPMOFs to direct morphology in block copolymer assemblies may open new methodologies to access complex materials far from thermodynamic equilibrium
Electroactive Artificial Muscles Based on Functionally Antagonistic CoreâShell Polymer Electrolyte Derived from PS-b-PSS Block Copolymer
Electroactive ionic soft actuators, a type of artificial muscles containing a polymer electrolyte membrane sandwiched between two electrodes, have been intensively investigated owing to their potential applications to bioinspired soft robotics, wearable electronics, and active biomedical devices. However, the design and synthesis of an efficient polymer electrolyte suitable for ion migration have been major challenges in developing high-performance ionic soft actuators. Herein, a highly bendable ionic soft actuator based on an unprecedented block copolymer is reported, i.e., polystyrene-b-poly(1-ethyl-3-methylimidazolium-4-styrenesulfonate) (PS-b-PSS-EMIm), with a functionally antagonistic coreâshell architecture that is specifically designed as an ionic exchangeable polymer electrolyte. The corresponding actuator shows exceptionally good actuation performance, with a high displacement of 8.22 mm at an ultralow voltage of 0.5 V, a fast rise time of 5 s, and excellent durability over 14 000 cycles. It is envisaged that the development of this high-performance ionic soft actuator could contribute to the progress toward the realization of the aforementioned applications. Furthermore, the procedure described herein can also be applied for developing novel polymer electrolytes related to solid-state lithium batteries and fuel cells
Investigation of the long effective conjugation length in defect-free insulated molecular wires
Due to the âinsulationâ of the Ï-conjugated backbones, insulated molecular wires (IMWs) are expected to be applied to various optoelectronic applications and nanotechnology.[1] Recently, Kazunori et al have succeeded in the synthesis of a self-threading polythiophene with a polyrotaxane-like 3D architecture (PSTB, see Figure 1), for which an intrawire hole mobility of 0.9 cm2 Vâ1 sâ1 has been measured.[2] Here, we aim to evaluate the extent of Ï-conjugation along polythiophene backbones sheathed within defect-free âinsulatingâ layers. A comparison between the experimental Raman spectra of the self-threading oligomers (i.e. 2STB-5STB) and the corresponding PSTB polymer indicates that: (i) the ratio of relative intensities of the two most intense Raman bands (I1375/1445) increases with the elongation of the size chain but does not saturate up to the pentamer, and (ii) Ï-conjugation spreads over 17â18 thiophene units in the polymer. Whether the effective conjugation length of the polymer is better described by using the long oligomer extrapolation approach[3] or periodic DFT calculations of the polymer is discussed in detailed by exploiting the very recent potentialities of state-of-the-art quantum chemical simulations of vibrational properties for crystalline solids.[Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
The Role of Architecture in the Elastic Response of Semiflexible Polymer and Fiber Networks
We study the elasticity of cross-linked networks of thermally fluctuating
stiff polymers. As compared to their purely mechanical counterparts, it is
shown that these thermal networks have a qualitatively different elastic
response. By accounting for the entropic origin of the single-polymer
elasticity, the networks acquire a strong susceptibility to polydispersity and
structural randomness that is completely absent in athermal models. In
extensive numerical studies we systematically vary the architecture of the
networks and identify a wealth of phenomena that clearly show the strong
dependence of the emergent macroscopic moduli on the underlying mesoscopic
network structure. In particular, we highlight the importance of the full
polymer length that to a large extent controls the elastic response of the
network, surprisingly, even in parameter regions where it does not enter the
macroscopic moduli explicitly. We provide theoretical scaling arguments to
relate the observed macroscopic elasticity to the physical mechanisms on the
microscopic and the mesoscopic scale.Comment: 12 pages, 8 figures, (v3) final versio
- âŠ