16,158 research outputs found

    Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-H\"uckel approximation

    Full text link
    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accomodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each others, the rearrangement of the surface charge distribution invariably produces anti-parallel dipolar doublets, that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions can not be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length, short compared with the size of the colloidal particles, is required in order to observe the attraction between like charged complexes due to the non-uniform distribution of the electric charge on their surface ('patch attraction'). On the other hand, by changing the polyelectrolyte/particle charge ratio, the interaction between like-charged polyelectrolyte-decorated (pd) particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the non-uniformity of their surface charge distribution.Comment: 24 pages, 9 figure

    Fluid-fluid demixing transitions in colloid--polyelectrolyte star mixtures

    Full text link
    We derive effective interaction potentials between hard, spherical colloidal particles and star-branched polyelectrolytes of various functionalities and smaller size than the colloids. The effective interactions are based on a Derjaguin-like approximation, which is based on previously derived potentials acting between polyelectrolyte stars and planar walls. On the basis of these interactions we subsequently calculate the demixing binodals of the binary colloid--polyelectrolyte star mixture, employing standard tools from liquid-state theory. We find that the mixture is indeed unstable at moderately high overall concentrations. The system becomes more unstable with respect to demixing as the star functionality and the size ratio grow.Comment: 24 pages, 9 figures, submitted to Journal of Physics: Condensed Matte

    Elasticity in strongly interacting soft solids: polyelectrolyte network

    Full text link
    This paper discusses the elastic behavior of a very long crosslinked polyelectrolyte chain (Debye-H\"uckel chain), which is weakly charged. Therefore the response of the crosslinked chain (network) on an external constant force ff acting on the ends of the chain is considered. A selfconsistent variational computation of an effective field theory is employed. It is shown, that the modulus of the polyelectrolyte network has two parts: the first term represents the usual entropy elasticity of connected flexible chains and the second term takes into account the electrostatic interaction of the monomers. It is proportional to the squared crosslink density and the Debye - screening parameter.Comment: submitted for publication to PR

    Molecular Dynamics Simulation of Semiflexible Polyampholyte Brushes - The Effect of Charged Monomers Sequence

    Full text link
    Planar brushes formed by end-grafted semiflexible polyampholyte chains, each chain containing equal number of positively and negatively charged monomers is studied using molecular dynamics simulations. Keeping the length of the chains fixed, dependence of the average brush thickness and equilibrium statistics of the brush conformations on the grafting density and the salt concentration are obtained with various sequences of charged monomers. When similarly charged monomers of the chains are arranged in longer blocks, the average brush thickness is smaller and dependence of brush properties on the grafting density and the salt concentration is stronger. With such long blocks of similarly charged monomers, the anchored chains bond to each other in the vicinity of the grafting surface at low grafting densities and buckle toward the grafting surface at high grafting densities.Comment: 8 pages,7 figure

    Conformational Instability of Rodlike Polyelectrolytes due to Counterion Fluctuations

    Full text link
    The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length. It is also found that the onset of conformational instability is a re-entrant phenomenon as a function of polyelectrolyte length for the unscreened case, and the Debye length or salt concentration for the screened case. This may be relevant in understanding the experimentally observed re-entrant condensation of DNA.Comment: 8 pages, 4 figure

    Effective Electrostatic Interactions in Suspensions of Polyelectrolyte Brush-Coated Colloids

    Full text link
    Effective electrostatic interactions between colloidal particles, coated with polyelectrolyte brushes and suspended in an electrolyte solvent, are described via linear response theory. The inner cores of the macroions are modeled as hard spheres, the outer brushes as spherical shells of continuously distributed charge, the microions (counterions and salt ions) as point charges, and the solvent as a dielectric continuum. The multi-component mixture of macroions and microions is formally mapped onto an equivalent one-component suspension by integrating out from the partition function the microion degrees of freedom. Applying second-order perturbation theory and a random phase approximation, analytical expressions are derived for the effective pair interaction and a one-body volume energy, which is a natural by-product of the one-component reduction. The combination of an inner core and an outer shell, respectively impenetrable and penetrable to microions, allows the interactions between macroions to be tuned by varying the core diameter and brush thickness. In the limiting cases of vanishing core diameter and vanishing shell thickness, the interactions reduce to those derived previously for star polyelectrolytes and charged colloids, respectively.Comment: 20 pages, 5 figures, Phys. Rev. E (in press
    • …
    corecore