82,964 research outputs found

    Trace levels of metallic corrosion in water determined by emission spectrography

    Get PDF
    Emission spectrographic method determines trace amounts of inorganic impurities in potable water. The capability of this innovation should arouse considerable interest among plant biologists, chemists working in organic synthesis, and pathologists

    Plant methods:putting the spotlight on technological innovation in the plant sciences.

    Get PDF
    Plant Methods is a new journal for plant biologists, specialising in the rapid publication of peer-reviewed articles with a focus on technological innovation in the plant sciences. The aim of Plant Methods is to stimulate the development and adoption of new and improved techniques and research tools in plant biology. We hope to promote more consistent standards in the plant sciences, and make readily accessible laboratory and computer-based research tools available to the whole community. This will be achieved by publishing Research articles, Methodology papers and Reviews using the BioMed Central Open Access publishing model. The journal is supported by a prestigious editorial board, whose members all recognise the importance of technological innovation as a driver for basic science

    Plant Biology Education: A Competency Based Vision for the Future

    Get PDF
    Societal Impact StatementPlant biology is an essential discipline for addressing global challenges from food security to climate change. In order to achieve this, we need to educate plant biologists who can contribute to research, enterprise, policy, public engagement and beyond. This article explores the potential of competency-based education, which emphasises what students can do rather than what we know. A flexible and adaptable model of competency based plant biology education is presented, along with practical suggestions and examples. This provides a framework through which we can educate plant biologists equipped to address major scientific and societal challenges of the future.SummaryPlant biology is an essential discipline for addressing global challenges from food security to climate change. In order to achieve this we need to educate plant biologists who can contribute to research, enterprise, policy, public engagement and beyond. In this article, I explore some of the issues and challenges facing plant biology education from authentic research driven curricula to the impact of AI. In order to effectively educate the plant biologists of the future I propose moving to a competency based approach to education. Competency based education emphasises what students can do rather than what they know. I present a three-domain competency model for plant biology, structured around (i) knowledge and information literacy (ii) disciplinary and professional experience and (iii) self-awareness and personal development as three interdependent aspects of competency. I accompany this with twelve proposed competencies for plant biologists. The model is flexible, robust and adaptable to specific local requirements and future demands of plant biology education. In reimagining plant biology education in this way we can present our discipline as exciting and relevant to students, and equip them with the capabilities required to contribute to plant biology activity from research to public policy

    Animal Defenses against Infectious Agents: Is Damage Control More Important Than Pathogen Control?

    Get PDF
    The ability of hosts to withstand a given number of pathogens is a critical component of health. Now playing catch-up with plant biologists, animal biologists are starting to formally separate this form of defense from classical resistance

    \u3cem\u3eFRIGIDA LIKE 2\u3c/em\u3e Is a Functional Allele in Landsberg \u3cem\u3eerecta\u3c/em\u3e and Compensates for a Nonsense Allele of \u3cem\u3eFRIGIDA LIKE 1\u3c/em\u3e

    Get PDF
    The Landsberg erecta (Ler) accession of Arabidopsis (Arabidopsis thaliana) has a weak allele of the floral inhibitor FLOWERING LOCUS C (FLC). FLC-Ler is weakly up-regulated by the active San Feliu-2 (Sf2) allele of FRIGIDA (FRI-Sf2), resulting in a moderately late-flowering phenotype. By contrast, the Columbia (Col) allele of FLC is strongly up-regulated by FRI-Sf2, resulting in a very late-flowering phenotype. In Col, the FRI-related gene FRI LIKE 1 (FRL1) is required for FRI-mediated upregulation of FLC. It is shown here that in Ler, the FRL1-related gene FRI LIKE 2 (FRL2), but not FRL1, is required for FRI-mediated up-regulation of FLC. FRL1-Ler is shown to be a nonsense allele of FRL1 due to a naturally occurring premature stop codon in the middle of the conceptual protein sequence, suggesting that FRL1-Ler is nonfunctional. Compared to FRL2-Col, FRL2-Ler has two amino acid changes in the conceptual protein sequence. Plants homozygous for FRI-Sf2, FLC-Ler, FRL1-Ler, and FRL2-Col have no detectable FLC expression, resulting in an extremely early flowering phenotype. Transformation of a genomic fragment of FRL2-Ler, but not of FRL2-Col, into a recombinant inbred line derived from these plants restores both FRI-mediated up-regulation of FLC expression and a late-flowering phenotype, indicating that FRL2-Ler is the functional allele of FRL2. Taken together, these results suggest that in the two different Arabidopsis accessions Col and Ler, either FRL1 or FRL2, but not both, is functional and required for FRI-mediated up-regulation of FLC

    Dissection of Nodule Development by Supplementation of \u3cem\u3eRhizobium leguminosarum\u3c/em\u3e biovar \u3cem\u3ephaseoli\u3c/em\u3e Purine Auxotrophs with 4-Aminoimidazole-5-Carboxamide Riboside

    Get PDF
    Purine auxotrophs of Rhizobium leguminosarum biovar phaseoli CFN42 elicit uninfected pseudonodules on bean (Phaseolus vulgaris L.). Addition of 4-aminoimidazole-5-carboxamide (AICA) riboside to the root medium during incubation of the plant with these mutants leads to enhanced nodule development, although nitrogenase activity is not detected. Nodules elicited in this manner had infection threads and anatomical features characteristic of normal nodules, such as peripheral vasculature rather than the central vasculature of the pseudonodules that were elicited without AICA riboside supplementation. Although 105 to 106 bacteria could be recovered from these nodules after full development, bacteria were not observed in the interior nodule cells. Instead, large cells with extensive internal membranes were present. Approximately 5% of the normal amount of leghemoglobin and 10% of the normal amount of uricase were detected in these nodules. To promote the development of true nodules rather than pseudonodules, AICA riboside was required no later than the second day through no more than the sixth day following inoculation. After this period, removal of AICA riboside from the root medium did not prevent the formation of true nodules. This observation suggests that there is a critical stage of infection, reached before nodule emergence, at which development becomes committed to forming a true nodule rather than a pseudonodule

    Voltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor

    Get PDF
    The Kv-like K+ channels at the plasma membrane, including the inward-rectifying KAT1 K+ channel of Arabidopsis, are important targets for manipulating K+ homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K+ channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-mutagenesis to explore residues that are thought to form two electrostatic counter-charge centers either side of a conserved Phe residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the counter-charge centers favored the open channel. Modelling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in context of the effects on hydration of amino-acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel

    Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency

    Get PDF
    Stomatal transpiration is at the centre of a crisis in water availability and crop production that is expected to unfold over the next 20-30 years. Global water usage has increased 6-fold in the past 100 years, twice as fast as the human population, and is expected to double again before 2030, driven mainly by irrigation and agriculture. Guard cell membrane transport is integral to controlling stomatal aperture and offers important targets for genetic manipulation to improve crop performance. However, its complexity presents a formidable barrier to exploring such possibilities. With few exceptions, mutations that increase water use efficiency commonly have been found to do so with substantial costs to the rate of carbon assimilation, reflecting the trade-off in CO2 availability with suppressed stomatal transpiration. One approach yet to be explored in any detail relies on quantitative systems analysis of the guard cell. Our deep knowledge of transport and homeostasis in these cells gives real substance to the prospect for ‘reverse engineering’ of stomatal responses, using in silico design in directing genetic manipulation for improved water use and crop yields. Here we address this problem with a focus on stomatal kinetics, taking advantage of the OnGuard software and models of the stomatal guard cell (www.psrg.org.uk) recently developed for exploring stomatal physiology. Our analysis suggests that manipulations of single transporter populations are likely to have unforeseen consequences. Channel gating, especially of the dominant K+ channels, appears the most favorable target for experimental manipulation
    • …
    corecore