222 research outputs found
Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission
Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings
Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort
Background: Pigs are mixing vessels for influenza viral reassortment but the extent of influenza transmission between swine and humans is not well understood.
Objectives: To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses.
Methods: UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titres≥40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity.
Results: 42% of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CI), Adjusted Odds Ratio after accounting for possible cross reactivity with other swine A(H1) viruses (aOR) 25.30, 95% CI [1.44-536.34], p=0.028.
Conclusion: The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunization of pig industry workers may reduce transmission and the potential for virus reassortment
Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort
Background: Pigs are mixing vessels for influenza viral reassortment but the extent of influenza transmission between swine and humans is not well understood.
Objectives: To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses.
Methods: UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titres≥40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity.
Results: 42% of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CI), Adjusted Odds Ratio after accounting for possible cross reactivity with other swine A(H1) viruses (aOR) 25.30, 95% CI [1.44-536.34], p=0.028.
Conclusion: The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunization of pig industry workers may reduce transmission and the potential for virus reassortment
Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort.
BACKGROUND: Pigs are mixing vessels for influenza viral reassortment but the extent of influenza transmission between swine and humans is not well understood. OBJECTIVES: To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses. METHODS: UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titres≥40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity. RESULTS: 42% of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CI), Adjusted Odds Ratio after accounting for possible cross reactivity with other swine A(H1) viruses (aOR) 25.3, 95% CI [1.4-536.3], p=0.028. CONCLUSION: The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunization of pig industry workers may reduce transmission and the potential for virus reassortment. This article is protected by copyright. All rights reserved
Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.
Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro
Does nasal colonization with Methicillin-resistant Staphylococcus aureus (MRSA) in pig farmers persist after holidays from pig exposure?
In Germany, it has been reported that up to 86% of pig farmers are colonized with Methicillin-resistant Staphylococcus aureus (MRSA) in the nares, at least intermittently. However, little is known about the long-term persistence of colonization, especially when the farmers do not have daily contact to pigs. Here, we analyzed whether an absence from work during the summer holidays had an impact on nasal MRSA colonization rates of pig farmers
Theories of practice and geography
Recent developments in theories of practice have seen place and space taken explicitly into account. In particular,
THEODORE SCHATZKI’s ‘site ontology’ offers distinctive but as yet under-explored means of engaging with human
geographies. By giving ontological priority to practices as constitutive of the social, this kind of practice theory provides an integrative conceptual framework that enables the analysis of diverse phenomena in relation to each other, over space and time, as they are constituted through practices. This article develops an outline agenda for bringing theories of practice, and particularly SCHATZKI’s ‘site ontology’, together with geographical inquiry. We elucidate this agenda through consideration of three contemporary preoccupations in human geography, comprising emotion, materiality and knowledge
Longitudinal study of Staphylococcus aureus and MRSA colonization of US swine veterinarians
Patterns of detection of S. aureus are being evaluated in a longitudinal study of a cohort of 67 swine veterinarians in the USA. This report presents interim data from the initial period of the study. Overall, approximately 70% of sampling events yielded S. aureus in nasal swabs from veterinarians, and 8% yielded MRSA isolates
Methicillin-Resistant Staphylococcus aureus ST9 in Pigs in Thailand
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is an important nosocomial and community-associated pathogen. Recently, livestock-associated MRSA (LA-MRSA) has emerged and disseminated in Europe and North America and now constitutes a considerable zoonotic burden in humans with risk factors of pig exposure, whereas the extent of the livestock reservoir is relatively unknown on other continents. METHODOLOGY/PRINCIPAL FINDINGS: From March through April 2011, MRSA was identified in pigs from 3 out of 30 production holdings in Chang Mai Province, Thailand. Representative isolates were subjected to molecular characterization and antimicrobial susceptibility testing; all isolates had genotypic and phenotypic characteristics of LA-MRSA previously characterized in the region: they belonged to ST9, lacked the lukF-lukS genes encoding Panton-Valentine leukocidin, and were resistant to multiple non-β-lactam antimicrobials. However, unlike other Asian LA-MRSA-ST9 variants, they were spa type t337 and harbored a different staphylococcal cassette chromosome mec IX. CONCLUSIONS/SIGNIFICANCE: A novel MRSA-ST9 lineage has been established in the pig population of Thailand, which differs substantially from LA-MRSA lineages found in other areas of the continent. The emergence of novel LA-MRSA lineages in the animal agriculture setting is worrisome and poses a serious threat to global public health
- …