502,399 research outputs found

    Plasmodium falciparum infection induces dynamic changes in the erythrocyte phospho-proteome

    Get PDF
    The phosphorylation status of red blood cell proteins is strongly altered during the infection by the malaria parasite Plasmodium falciparum. We identify the key phosphorylation events that occur in the erythrocyte membrane and cytoskeleton during infection, by a comparative analysis of global phospho-proteome screens between infected (obtained at schizont stage) and uninfected RBCs. The meta-analysis of reported mass spectrometry studies revealed a novel compendium of 495 phosphorylation sites in 182 human proteins with regulatory roles in red cell morphology and stability, with about 25% of these sites specific to infected cells. A phosphorylation motif analysis detected 7 unique motifs that were largely mapped to kinase consensus sequences of casein kinase II and of protein kinase A/protein kinase C. This analysis highlighted prominent roles for PKA/PKC involving 78 phosphorylation sites. We then compared the phosphorylation status of PKA (PKC) specific sites in adducin, dematin, Band 3 and GLUT-1 in uninfected RBC stimulated or not by cAMP to their phosphorylation status in iRBC. We showed cAMP-induced phosphorylation of adducin S59 by immunoblotting and we were able to demonstrate parasite-induced phosphorylation for adducin S726, Band 3 and GLUT-1, corroborating the protein phosphorylation status in our erythrocyte phosphorylation site compendium

    Erythropoietin-induced serine 727 phosphorylation of STAT3 in erythroid cells is mediated by a MEK-, ERK-, and MSK1-dependent pathway

    Get PDF
    Objective. Erythropoietin (EPO) is a key regulator of erythropoiesis, playing a role in both the proliferation and differentiation of erythroid cells. One of the signal transduction molecules activated upon EPO stimulation is signal transducer and activator of transcription (STAT) 3. Besides tyrosine 705 phosphorylation of STAT3, serine 727 phosphorylation has been described upon EPO stimulation. In the present study, we investigated which molecular pathways mediate the STAT3 serine 727 phosphorylation and the functional implications of this phosphorylation. Methods. The EPO-dependent erythroid cell line ASE2 was used to investigate which signaling routes were involved in the STAT3 serine 727 phosphorylation. Western blotting using phosphospecific antibodies was used to assess the phosphorylation status of STAT3 molecules. Transfection analysis was performed to investigate the transactivational potential of STAT3, and quantitative RT-PCR was used to study the in vivo gene expression of STAT3-responsive genes. Results. Western blotting of extracts of cells exposed to various chemical inhibitors revealed that the MEK inhibitors PD98059 and U0126 abrogated the EPO-mediated STAT3 serine 727 phosphorylation without an effect on tyrosine phosphorylation. Further analysis showed that MSK1 is activated downstream of ERK, and retroviral transductions with kinase-inactive MSK1 revealed that MSK1 is necessary for STAT3 serine phosphorylation. Furthermore, the STAT3-mediated transactivation was reduced by blocking the STAT3 serine phosphorylation with the MEK inhibitor U0126 or by expression of kinase-inactive MSK1. Conclusions. The EPO-induced STAT3 serine 727 phosphorylation is mediated by a pathway involving MEK, ERK, and MSK1. Furthermore, serine phosphorylation of STAT3 augments the transactivational potential of STAT3.

    Revisiting Frank–Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr) in a length-dependent fashion

    Get PDF
    Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin-associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr ) in maximally activating [Ca2+ ]. Activation was achieved by rapidly increasing the temperature (temperature-jump of 0.5-20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85-1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC-exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained for in vivo phosphorylation. Clearly, phosphorylation affects the magnitude of ktr following step shortening or ramp shortening. Using a two-state model, we explore the effect of RLC phosphorylation on the kinetics of force development, which proposes that phosphorylation affects the kinetics of both attachment and detachment of cross-bridges. In summary, RLC phosphorylation affects the rate and extent of force redevelopment. These findings were obtained in maximally activated muscle at saturating [Ca2+ ] and are not explained by changes in the Ca2+ -sensitivity of acto-myosin interactions. The length-dependence of the rate of force redevelopment, together with the modulation by the state of RLC phosphorylation, suggests that these effects play a role in the Frank-Starling law of the heart.Published versio

    Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β\u3csub\u3e2\u3c/sub\u3e-agonist use

    Get PDF
    Background Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this brake on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo β2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Methods Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β2-adrenergic receptor haplotype determination. Results Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Conclusion Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to β-agonist. The decreased phosphorylation does not appear to be associated with a particular β2-adrenergic receptor haplotype. The observed decrease in VASP phosphorylation suggests greater inhibition of actin reorganization which is necessary for altering attachment and migration required during epithelial repair

    Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation.

    Get PDF
    Agrin is thought to be the nerve-derived factor that initiates acetylcholine receptor (AChR) clustering at the developing neuromuscularjunction. We have investigated the signaling pathway in mouse C2 myotubes and report that agrin induces a rapid but transient tyrosine phosphorylation of the AChR beta subunit. As the beta-subunit tyrosine phosphorylation occurs before the formation of AChR clusters, it may serve as a precursor step in the clustering mechanism. Consistent with this, we observed that tyrosine phosphorylation of the beta subunit correlated precisely with the presence or absence of clustering under several experimental conditions. Moreover, two tyrosine kinase inhibitors, herbimycin and staurosporine, that blocked beta-subunit phosphorylation also blocked agrin-induced clustering. Surprisingly, the inhibitors also dispersed preformed AChR clusters, suggesting that the tyrosine phosphorylation of other proteins may be required for the maintenance of receptor clusters. These findings indicate that in mammalian muscle, agrin-induced AChR clustering occurs through a mechanism that requires tyrosine phosphorylation and may involve tyrosine phosphorylation of the AChR itself

    Tau phosphorylation at Alzheimer\u27s disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated.

    Get PDF
    Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer\u27s disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains

    Phospho.ELM:a database of experimentally verified phosphorylation sites in eukaryotic proteins

    Get PDF
    BACKGROUND: Post-translational phosphorylation is one of the most common protein modifications. Phosphoserine, threonine and tyrosine residues play critical roles in the regulation of many cellular processes. The fast growing number of research reports on protein phosphorylation points to a general need for an accurate database dedicated to phosphorylation to provide easily retrievable information on phosphoproteins.DESCRIPTION: Phospho.ELM http://phospho.elm.eu.org is a new resource containing experimentally verified phosphorylation sites manually curated from the literature and is developed as part of the ELM (Eukaryotic Linear Motif) resource. Phospho.ELM constitutes the largest searchable collection of phosphorylation sites available to the research community. The Phospho.ELM entries store information about substrate proteins with the exact positions of residues known to be phosphorylated by cellular kinases. Additional annotation includes literature references, subcellular compartment, tissue distribution, and information about the signaling pathways involved as well as links to the molecular interaction database MINT. Phospho.ELM version 2.0 contains 1703 phosphorylation site instances for 556 phosphorylated proteins.CONCLUSION: Phospho.ELM will be a valuable tool both for molecular biologists working on protein phosphorylation sites and for bioinformaticians developing computational predictions on the specificity of phosphorylation reactions.</p

    Regulation of Membrane Targeting of the G Protein-coupled Receptor Kinase 2 by Protein Kinase A and Its Anchoring Protein AKAP79

    Get PDF
    The beta 2 adrenergic receptor (beta 2AR) undergoes desensitization by a process involving its phosphorylation by both protein kinase A (PKA) and G protein-coupled receptor kinases (GRKs). The protein kinase A-anchoring protein AKAP79 influences beta 2AR phosphorylation by complexing PKA with the receptor at the membrane. Here we show that AKAP79 also regulates the ability of GRK2 to phosphorylate agonist-occupied receptors. In human embryonic kidney 293 cells, overexpression of AKAP79 enhances agonist-induced phosphorylation of both the beta 2AR and a mutant of the receptor that cannot be phosphorylated by PKA (beta 2AR/PKA-). Mutants of AKAP79 that do not bind PKA or target to the beta 2AR markedly inhibit phosphorylation of beta 2AR/PKA-. We show that PKA directly phosphorylates GRK2 on serine 685. This modification increases Gbeta gamma subunit binding to GRK2 and thus enhances the ability of the kinase to translocate to the membrane and phosphorylate the receptor. Abrogation of the phosphorylation of serine 685 on GRK2 by mutagenesis (S685A) or by expression of a dominant negative AKAP79 mutant reduces GRK2-mediated translocation to beta 2AR and phosphorylation of agonist-occupied beta 2AR, thus reducing subsequent receptor internalization. Agonist-stimulated PKA-mediated phosphorylation of GRK2 may represent a mechanism for enhancing receptor phosphorylation and desensitization

    Phosphorylation of Sli15 by Ipl1 is important for proper CPC localization and chromosome stability in <em>Saccharomyces cerevisiae</em>

    Get PDF
    The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here we have identified multiple sites of CPC autophosphorylation on yeast Sli15 that are located within its central microtubule-binding domain and examined the functional significance of their phosphorylation by Ipl1 through mutation of these sites, either to non-phosphorylatable alanine (sli15-20A) or to acidic residues to mimic constitutive phosphorylation (sli15-20D). Both mutant sli15 alleles confer chromosome instability, but this is mediated neither by changes in the capacity of Sli15 to activate Ipl1 kinase nor by decreased efficiency of chromosome biorientation, a key process in cell division that requires CPC function. Instead, we find that mimicking constitutive phosphorylation of Sli15 on the Ipl1 phosphorylation sites causes delocalization of the CPC in metaphase, whereas blocking phosphorylation of Sli15 on the Ipl1 sites drives excessive localization of Sli15 to the mitotic spindle in pre-anaphase cells. Consistent with these results, direct interaction of Sli15 with microtubules in vitro is greatly reduced either following phosphorylation by Ipl1 or when constitutive phosphorylation at the Ipl1-dependent phosphorylation sites is mimicked by aspartate or glutamate substitutions. Furthermore, we find that mimicking Ipl1 phosphorylation of Sli15 interferes with the 'tension checkpoint'--the CPC-dependent mechanism through which cells activate the spindle assembly checkpoint to delay anaphase in the absence of tension on kinetochore-microtubule attachments. Ipl1-dependent phosphorylation of Sli15 therefore inhibits its association with microtubules both in vivo and in vitro and may negatively regulate the tension checkpoint mechanism

    The robustness of proofreading to crowding-induced pseudo-processivity in the MAPK pathway

    Get PDF
    Double phosphorylation of protein kinases is a common feature of signalling cascades. This motif may reduce cross-talk between signalling pathways, as the second phosphorylation site allows for proofreading, especially when phosphorylation is distributive rather than processive. Recent studies suggest that phosphorylation can be `pseudo-processive' in the crowded cellular environment, as rebinding after the first phosphorylation is enhanced by slow diffusion. Here, we use a simple model with unsaturated reactants to show that specificity for one substrate over another drops as rebinding increases and pseudo-processive behavior becomes possible. However, this loss of specificity with increased rebinding is typically also observed if two distinct enzyme species are required for phosphorylation, i.e. when the system is necessarily distributive. Thus the loss of specificity is due to an intrinsic reduction in selectivity with increased rebinding, which benefits inefficient reactions, rather than pseudo-processivity itself. We also show that proofreading can remain effective when the intended signalling pathway exhibits high levels of rebinding-induced pseudo-processivity, unlike other proposed advantages of the dual phosphorylation motif.Comment: To appear in Biohys.
    corecore